High Performance Titanium Antimonide TiSb2 Alloy for Na-Ion Batteries and Capacitors

被引:37
作者
Arnaiz, Maria [1 ]
Luis Gomez-Camer, Juan [1 ]
Ajuria, Jon [1 ]
Bonilla, Francisco [1 ]
Acebedo, Begona [1 ]
Jauregui, Maria [1 ]
Goikolea, Eider [2 ]
Galceran, Montserrat [1 ]
Rojo, Teofilo [1 ,2 ]
机构
[1] CIC EnergiGUNE, Albert Einstein 48,Technol Pk Alava, Alava 01510, Basque Country, Spain
[2] Univ Basque Country, UPV EHU, Inorgan Chem Dept, POB 644, Leioa 48080, Spain
关键词
ANODE MATERIALS; LITHIUM-ION; LI-ION; NEGATIVE ELECTRODE; ACTIVATED CARBON; SODIUM; ENERGY; STORAGE; SB; NANOCOMPOSITE;
D O I
10.1021/acs.chemmater.8b02639
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, we report for the first time the use of TiSb2 alloy as anode material for sodium-ion batteries (NIBs) and capacitors (NICs). The electrochemical performance of TiSb2 in NIBs shows stable cycling with a capacity of about 225 mAh.g(-1) for 200 cycles. Discrepancies with the expected theoretical specific charge are discussed by means of operando XRD and ex situ TEM analysis. The excellent rate capability enables the use of TiSb2 in NICs, achieving promising high energy densities of 132 Wh.kg(-1) at 114 W.kg(-1) and 65 Wh.kg(-1) at 11 kW.kg(-1), which are among the best reported values for alloying materials in NICs. However, due to the well-known problem of volume changes upon cycling of alloying materials, the capacity retention needs to be improved. Using cross linked functional binders as carboxymethyl cellulose-poly(acrylic acid) we enhanced the retention after 1000 cycles from 10% to 63%, paving the way to develop new high-performance anodes for NICs.
引用
收藏
页码:8155 / 8163
页数:9
相关论文
共 69 条
[1]   Graphene-based lithium ion capacitor with high gravimetric energy and power densities [J].
Ajuria, Jon ;
Arnaiz, Maria ;
Botas, Cristina ;
Carriazo, Daniel ;
Mysyk, Roman ;
Rojo, Teofilo ;
Talyzin, Alexandr V. ;
Goikolea, Eider .
JOURNAL OF POWER SOURCES, 2017, 363 :422-427
[2]   Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits [J].
Ajuria, Jon ;
Redondo, Edurne ;
Arnaiz, Maria ;
Mysyk, Roman ;
Rojo, Teofilo ;
Goikolea, Eider .
JOURNAL OF POWER SOURCES, 2017, 359 :17-26
[3]   An asymmetric hybrid nonaqueous energy storage cell [J].
Amatucci, GG ;
Badway, F ;
Du Pasquier, A ;
Zheng, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (08) :A930-A939
[4]  
[Anonymous], FRONT RUNN LITH ION
[5]   High performance sodium-ion hybrid capacitor based on Na2Ti2O4(OH)2 nanostructures [J].
Babu, Binson ;
Shaijumon, M. M. .
JOURNAL OF POWER SOURCES, 2017, 353 :85-94
[6]   The reaction mechanism of FeSb2 as anode for sodium-ion batteries [J].
Baggetto, Loic ;
Hah, Hien-Yoong ;
Johnson, Charles E. ;
Bridges, Craig A. ;
Johnson, Jacqueline A. ;
Veith, Gabriel M. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (20) :9538-9545
[7]   Predictions of particle size and lattice diffusion pathway requirements for sodium-ion anodes using η-Cu6Sn5 thin films as a model system [J].
Baggetto, Loic ;
Jumas, Jean-Claude ;
Gorka, Joanna ;
Bridges, Craig A. ;
Veith, Gabriel M. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (26) :10885-10894
[8]   New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon [J].
Bommier, Clement ;
Surta, Todd Wesley ;
Dolgos, Michelle ;
Ji, Xiulei .
NANO LETTERS, 2015, 15 (09) :5888-5892
[9]   Hybridization of electrochemical capacitors and rechargeable batteries: An experimental analysis of the different possible approaches utilizing activated carbon, Li4Ti5O12 and LiMn2O4 [J].
Cericola, Dario ;
Novak, Petr ;
Wokaun, Alexander ;
Koetz, Ruediger .
JOURNAL OF POWER SOURCES, 2011, 196 (23) :10305-10313
[10]   Challenges for Na-ion Negative Electrodes [J].
Chevrier, V. L. ;
Ceder, G. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (09) :A1011-A1014