Deep Learning-Based Prediction of the 3D Postorthodontic Facial Changes

被引:22
|
作者
Park, Y. S. [1 ]
Choi, J. H. [2 ,3 ]
Kim, Y. [4 ]
Choi, S. H. [1 ]
Lee, J. H. [1 ,5 ]
Kim, K. H. [1 ,5 ]
Chung, C. J. [1 ,5 ]
机构
[1] Yonsei Univ, Inst Craniofacial Deform, Coll Dent, Dept Orthodont, Seoul, South Korea
[2] Smile Future Orthodont, Seoul, South Korea
[3] Seoul Natl Univ, Sch Dent, Dept Orthodont, Seoul, South Korea
[4] Imagoworks Inc, Seoul, South Korea
[5] Yonsei Univ, Dept Orthodont, Gangnam Severance Hosp, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
soft tissue prediction; deep learning; conditional GAN; orthodontics; 3-dimensional; outcome simulation; SOFT-TISSUE PROFILE; ACCURACY; SUPERIMPOSITION; RELIABILITY; DOLPHIN; ADULT;
D O I
10.1177/00220345221106676
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
With the increase of the adult orthodontic population, there is a need for an accurate and evidence-based prediction of the posttreatment face in 3 dimensions (3D). The objectives of this study are 1) to develop a 3D postorthodontic face prediction method based on a deep learning network using the patient-specific factors and orthodontic treatment conditions and 2) to validate the accuracy and clinical usability of the proposed method. Paired sets (n = 268) of pretreatment (T1) and posttreatment (T2) cone-beam computed tomography (CBCT) of adult patients were trained with a conditional generative adversarial network to generate 3D posttreatment facial data based on the patient's gender, age, and the changes of upper (Delta U1) and lower incisor position (Delta L1) as input. The accuracy was calculated with prediction error and mean absolute distances between real T2 (T2) and predicted T2 (PT2) near 6 perioral landmark regions, as well as percentage of prediction error less than 2 mm using test sets (n = 44). For qualitative evaluation, an online survey was conducted with experienced orthodontists as panels (n = 56). Overall, PT2 indicated similar 3D changes to the T2 face, with the most apparent changes simulated in the perioral regions. The mean prediction error was 1.2 +/- 1.01 mm with 80.8% accuracy. More than 50% of the experienced orthodontists were unable to distinguish between real and predicted images. In this study, we proposed a valid 3D postorthodontic face prediction method by applying a deep learning algorithm trained with CBCT data sets.
引用
收藏
页码:1372 / 1379
页数:8
相关论文
共 50 条
  • [31] Deep Learning-Based Monocular 3D Object Detection with Refinement of Depth Information
    Hu, Henan
    Zhu, Ming
    Li, Muyu
    Chan, Kwok-Leung
    SENSORS, 2022, 22 (07)
  • [32] Deep Learning-Based Action Recognition Using 3D Skeleton Joints Information
    Tasnim, Nusrat
    Islam, Md. Mahbubul
    Baek, Joong-Hwan
    INVENTIONS, 2020, 5 (03) : 1 - 15
  • [33] 3D wave simulation based on a deep learning model for spatiotemporal prediction
    Li, Ying
    Zhang, Xiaohui
    Cheng, Lingxiao
    Xie, Ming
    Cao, Kai
    OCEAN ENGINEERING, 2022, 263
  • [34] Deep learning-based 3D point cloud classification: A systematic survey and outlook
    Zhang, Huang
    Wang, Changshuo
    Tian, Shengwei
    Lu, Baoli
    Zhang, Liping
    Ning, Xin
    Bai, Xiao
    DISPLAYS, 2023, 79
  • [35] A comparative study of deep learning-based knowledge-based planning methods for 3D dose distribution prediction of head and neck
    Osman, Alexander F. I.
    Tamam, Nissren M.
    Yousif, Yousif A. M.
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2023, 24 (09):
  • [36] Towards Deep Learning-based 6D Bin Pose Estimation in 3D Scans
    Gajdosech, Lukas
    Kocur, Viktor
    Stuchlik, Martin
    Hudec, Lukas
    Madaras, Martin
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 4, 2022, : 545 - 552
  • [37] Deep Learning-Based Partial Inductance Extraction of 3-D Interconnects
    Jia, Xiaofan
    Wang, Mingyu
    Dai, Qiqi
    Wang, Chao-Fu
    Yucel, Abdulkadir C.
    IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, 2025, 10 : 112 - 124
  • [38] An Integrated FPGA Accelerator for Deep Learning-Based 2D/3D Path Planning
    Sugiura, Keisuke
    Matsutani, Hiroki
    IEEE TRANSACTIONS ON COMPUTERS, 2024, 73 (06) : 1442 - 1456
  • [39] A deep learning-based workflow for fast prediction of 3D state variables in geological carbon storage: A dimension reduction approach
    Wang, Hongsheng
    Hosseini, Seyyed A.
    Tartakovsky, Alexandre M.
    Leng, Jianqiao
    Fan, Ming
    JOURNAL OF HYDROLOGY, 2024, 636
  • [40] Deep-Learning-based Facial Classifier Applying 3D Minimum Spanning Tree
    Yu, Fan-Nong
    Chen, Ying-Jen
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON MANAGEMENT OF DIGITAL ECOSYSTEMS (MEDES'18), 2018, : 59 - 65