Deep-learning seismology

被引:11
作者
Mousavi, S. Mostafa [1 ,2 ]
Beroza, Gregory C. [1 ]
机构
[1] Stanford Univ, Dept Geophys, Stanford, CA 94305 USA
[2] Google, Mountain View, CA 94043 USA
关键词
CONVOLUTIONAL NEURAL-NETWORK; WAVE-FORM INVERSION; SEISMIC FACIES ANALYSIS; PHYSICS; MODEL; EARTHQUAKES; FRAMEWORK; PICKING; NOISE; CLASSIFICATION;
D O I
10.1126/science.ahm4470
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Seismic waves from earthquakes and other sources are used to infer the structure and properties of Earth's interior. The availability of large-scale seismic datasets and the suitability of deep-learning techniques for seismic data processing have pushed deep learning to the forefront of fundamental, long-standing research investigations in seismology. However, some aspects of applying deep learning to seismology are likely to prove instructive for the geosciences, and perhaps other research areas more broadly. Deep learning is a powerful approach, but there are subtleties and nuances in its application. We present a systematic overview of trends, challenges, and opportunities in applications of deep-learning methods in seismology.
引用
收藏
页码:725 / +
页数:12
相关论文
共 177 条
  • [61] Ku B., 2020, IEEE GEOSCI REMOTE S, V19, P1, DOI [10.1109/LGRS.2022.3143118, DOI 10.1109/LGRS.2022.3143118]
  • [62] Estimation of groundwater storage from seismic data using deep learning
    Lahivaara, Timo
    Malehmir, Alireza
    Pasanen, Antti
    Karkkainen, Leo
    Huttunen, Janne M. J.
    Hesthaven, Jan S.
    [J]. GEOPHYSICAL PROSPECTING, 2019, 67 (08) : 2115 - 2126
  • [63] A deep learning approach for automatic recognition of seismo-volcanic events at the Cotopaxi volcano
    Lara, Fernando
    Lara-Cueva, Roman
    Larco, Julio C.
    Carrera, Enrique, V
    Leon, Ruben
    [J]. JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 2021, 409
  • [64] Deep learning
    LeCun, Yann
    Bengio, Yoshua
    Hinton, Geoffrey
    [J]. NATURE, 2015, 521 (7553) : 436 - 444
  • [65] Introduction to the Special Issue on Rotational Seismology and Engineering Applications
    Lee, W. H. K.
    Celebi, M.
    Todorovska, M. I.
    Igel, H.
    [J]. BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2009, 99 (2B) : 945 - 957
  • [66] CO2 storage monitoring based on time-lapse seismic data via deep learning
    Li, Dong
    Peng, Suping
    Guo, Yinling
    Lu, Yongxu
    Cui, Xiaoqin
    [J]. INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2021, 108
  • [67] ADDCNN: An Attention-Based Deep Dilated Convolutional Neural Network for Seismic Facies Analysis With Interpretable SpatialSpectral Maps
    Li, Fangyu
    Zhou, Huailai
    Wang, Zengyan
    Wu, Xinming
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (02): : 1733 - 1744
  • [68] Deep-Learning Inversion of Seismic Data
    Li, Shucai
    Liu, Bin
    Ren, Yuxiao
    Chen, Yangkang
    Yang, Senlin
    Wang, Yunhai
    Jiang, Peng
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (03): : 2135 - 2149
  • [69] Seismic compressive sensing by generative inpainting network: Toward an optimized acquisition survey
    Li X.R.
    Mitsakos N.
    Lu P.
    Xiao Y.
    Zhao X.
    [J]. Leading Edge, 2019, 38 (12) : 923 - 933
  • [70] Multitask Learning for Super-Resolution of Seismic Velocity Model
    Li, Yinshuo
    Song, Jianyong
    Lu, Wenkai
    Monkam, Patrice
    Ao, Yile
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09): : 8022 - 8033