Deep-learning seismology

被引:11
作者
Mousavi, S. Mostafa [1 ,2 ]
Beroza, Gregory C. [1 ]
机构
[1] Stanford Univ, Dept Geophys, Stanford, CA 94305 USA
[2] Google, Mountain View, CA 94043 USA
关键词
CONVOLUTIONAL NEURAL-NETWORK; WAVE-FORM INVERSION; SEISMIC FACIES ANALYSIS; PHYSICS; MODEL; EARTHQUAKES; FRAMEWORK; PICKING; NOISE; CLASSIFICATION;
D O I
10.1126/science.ahm4470
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Seismic waves from earthquakes and other sources are used to infer the structure and properties of Earth's interior. The availability of large-scale seismic datasets and the suitability of deep-learning techniques for seismic data processing have pushed deep learning to the forefront of fundamental, long-standing research investigations in seismology. However, some aspects of applying deep learning to seismology are likely to prove instructive for the geosciences, and perhaps other research areas more broadly. Deep learning is a powerful approach, but there are subtleties and nuances in its application. We present a systematic overview of trends, challenges, and opportunities in applications of deep-learning methods in seismology.
引用
收藏
页码:725 / +
页数:12
相关论文
共 177 条
  • [1] Florez MA, 2020, Arxiv, DOI arXiv:2011.09038
  • [2] Deep Learning for Seismic Inverse Problems: Toward the Acceleration of Geophysical Analysis Workflows
    Adler, Amir
    Araya-Polo, Mauricio
    Poggio, Tomaso
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2021, 38 (02) : 89 - 119
  • [3] aetinc, About us
  • [4] A machine-learning benchmark for facies classification
    Alaudah, Yazeed
    Michalowicz, Patrycja
    Alfarraj, Motaz
    Alregib, Ghassan
    [J]. INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2019, 7 (03): : SE175 - SE187
  • [6] Semisupervised sequence modeling for elastic impedance inversion
    Alfarraj, Motaz
    AlRegib, Ghassan
    [J]. INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2019, 7 (03): : SE237 - SE249
  • [7] Deep learning-driven velocity model building workflow
    Araya-Polo M.
    Farris S.
    Florez M.
    [J]. Leading Edge, 2019, 38 (11) : 872A1 - 872A9
  • [8] Araya-Polo Mauricio, 2018, Leading Edge, V37, P58, DOI 10.1190/tle37010058.1
  • [9] Anatomy of Continuous Mars SEIS and Pressure Data from Unsupervised Learning
    Barkaoui, Salma
    Lognonne, Philippe
    Kawamura, Taichi
    Stutzmann, Eleonore
    Seydoux, Leonard
    de Hoop, Maarten, V
    Balestriero, Randall
    Scholz, John-Robert
    Sainton, Gregory
    Plasman, Matthieu
    Ceylan, Savas
    Clinton, John
    Spiga, Aymeric
    Widmer-Schnidrig, Rudolf
    Civilini, Francesco
    Banerdt, W. Bruce
    [J]. BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2021, 111 (06) : 2964 - 2981
  • [10] Machine learning and earthquake forecasting-next steps
    Beroza, Gregory C.
    Segou, Margarita
    Mostafa Mousavi, S.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)