Tensioned quasi-interpolation via geometric continuity

被引:11
作者
Lamberti, P
Manni, C
机构
[1] Univ Turin, Dept Math, I-10124 Turin, Italy
[2] Univ Roma Tor Vergata, Dept Math, I-00173 Rome, Italy
关键词
quasi-interpolation; tension properties; parametric curves;
D O I
10.1023/A:1025823221346
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper proposes a method for the construction of C-2 quasi-interpolating functions with tension properties. The constructed quasi-interpolant is a parametric cubic curve and its shape can be easily controlled via tension parameters which have an immediate geometric interpretation. Numerical examples are presented.
引用
收藏
页码:105 / 127
页数:23
相关论文
共 29 条
[2]  
Boehm W., 1985, COMPUT AIDED GEOM D, V2, P313
[3]   MONOTONE PIECEWISE BICUBIC INTERPOLATION [J].
CARLSON, RE ;
FRITSCH, FN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (02) :386-400
[4]   SHAPE-PRESERVING QUASI-INTERPOLATION AND INTERPOLATION BY BOX SPLINE SURFACES [J].
CHUI, CK ;
DIAMOND, H ;
RAPHAEL, L .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1989, 25 (02) :169-198
[5]   P1-reproducing shape-preserving quasi-interpolant using positive quadratic splines with local support [J].
Conti, C ;
Morandi, R ;
Rabut, C .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 104 (02) :111-122
[6]  
CONTI C, 1998, MATH METHODS CURVES, V2, P55
[7]  
CONTI C, 2001, IN PRESS J CAAA
[8]   Curve and surface construction using variable degree polynomial splines [J].
Costantini, P .
COMPUTER AIDED GEOMETRIC DESIGN, 2000, 17 (05) :419-446
[9]  
Dyn N., 1987, ANALYSIS, V7, P313
[10]  
Farin G., 1990, Computer-Aided Geometric Design, V7, P533, DOI 10.1016/0167-8396(90)90014-I