HEAT TRANSFER CHARACTERISTICS AND COOLING PERFORMANCE OF MICROCHANNEL HEAT SINKS WITH NANOFLUIDS

被引:0
|
作者
Chen, Chien-Hsin [1 ]
Ding, Chang-Yi [1 ]
机构
[1] Natl Formosa Univ, Dept Mech Design Engn, Yunlin 632, Taiwan
来源
关键词
THERMAL-CONDUCTIVITY; FLOW; ENHANCEMENT; CONVECTION;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents a numerical study on the heat transfer characteristics and cooling performance of a microchannel heat sink with water-gamma Al2O3 nanofluids having different nanoparticle volume fraction. In view of the small dimensions of the microstructures, the microchannel heat sink is modeled as a fluid-saturated porous medium in the simulation. The Forchheimer-Brinkman-extended Darcy equation is used to describe the fluid flow and the two-equation model with thermal dispersion is utilized for heat transfer. Typical results for the temperature distributions of the fin and fluid phase are presented for various values of the inertial force parameter. It is found that the fin temperature distribution is practically not sensitive to the inertial effect, while the fluid temperature distribution and the total thermal resistance change significantly due to the inertial force effect. In general, the effect of fluid inertia is to reduce the total thermal resistance and the temperature difference between the fin and the fluid phase. The total thermal resistances obtained from the present model with inertial effect match well with the available experimental results, whereas the thermal resistance is overestimated as the inertial effect is neglected.
引用
收藏
页码:521 / 527
页数:7
相关论文
共 50 条
  • [1] Heat Transfer Enhancement in Microchannel Heat Sinks Using Nanofluids
    Hung, Tu Chieh
    Siao, Yong Hao
    Yan, Wei Mon
    Wang, Xiao Dong
    Chang, Chun Yen
    PROCEEDINGS OF ISHTEC2012, 4TH INTERNATIONAL SYMPOSIUM ON HEAT TRANSFER AND ENERGY CONSERVATION, 2011, : 193 - 197
  • [2] Heat transfer enhancement in microchannel heat sinks using nanofluids
    Hung, Tu-Chieh
    Yan, Wei-Mon
    Wang, Xiao-Dong
    Chang, Chun-Yen
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (9-10) : 2559 - 2570
  • [3] Fluid flow characteristics and heat transfer performance in microchannel heat sinks: A review
    Jan, Misba
    Butt, Mohammad Mursaleen
    Hassan, Mohammad Muzaffarul
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2023, 237 (03) : 1073 - 1084
  • [4] Microchannel heat sinks with nanofluids for cooling electronic components: Performance enhancement, challenges, and limitations
    Maghrabie, Hussein M.
    Olabi, A. G.
    Sayed, Enas Taha
    Wilberforce, Tabbi
    Elsaid, Khaled
    Doranehgard, Mohammad Hossein
    Abdelkareem, Mohammad Ali
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2023, 37
  • [5] COOLING PERFORMANCE OF NANOFLUIDS IN A MICROCHANNEL HEAT SINK
    Wang, Y.
    Chung, S. J.
    Leonard, J. P.
    Cho, S. K.
    Phuoc, T.
    Soong, Y.
    Chyu, M. K.
    MNHMT2009, VOL 1, 2010, : 617 - 623
  • [6] Cooling performance of a microchannel heat sink with nanofluids
    Jang, Seok Pil
    Choi, Stephen U. S.
    APPLIED THERMAL ENGINEERING, 2006, 26 (17-18) : 2457 - 2463
  • [7] Comprehensive Review on Heat Transfer Characteristics of Microchannel Heat Sinks
    Jabin, J.
    Nallusamy, N.
    Vigneshwaran, V.
    RENEWABLE ENERGY SOURCES AND TECHNOLOGIES, 2019, 2161
  • [8] Optimizing Heat Transfer in Microchannel Heat Sinks: A Numerical Investigation with Nanofluids and Modified Geometries
    Khamesloo, F. Nasiri
    Ganji, D. Domiri
    INTERNATIONAL JOURNAL OF ENGINEERING, 2024, 37 (05): : 860 - 875
  • [9] Nanofluids in microchannel heat sinks for efficient flow cooling of power electronic devices
    Ma, Zihuan
    Hu, Chengyu
    Ma, Li
    Chen, Hongqiang
    Hou, Junsheng
    Hao, Nanjing
    Wei, Jinjia
    APPLIED MATERIALS TODAY, 2023, 35
  • [10] On conjugate heat transfer in microchannel heat sinks
    Fathi N.
    Pourghasemi M.
    Aleyasin S.S.
    Savoldi L.
    Rodriguez S.
    International Journal of Thermofluids, 2024, 22