Interfacial engineering of the NiSe2/FeSe2 p-p heterojunction for promoting oxygen evolution reaction and electrocatalytic urea oxidation

被引:318
作者
Ni, Shan [1 ,2 ]
Qu, Hongnan [1 ]
Xu, Zihao [1 ,2 ]
Zhu, Xiangyang [1 ,2 ]
Xing, Huifang [1 ,2 ]
Wang, Li [1 ]
Yu, Jiemiao [1 ]
Liu, Huizhou [1 ,2 ,3 ]
Chen, Congmei [4 ]
Yang, Liangrong [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, CAS Key Lab Green Proc & Engn, State Key Lab Biochem Engn, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Chem Engn, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266061, Peoples R China
[4] Natl Supercomp Ctr Shenzhen, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Oxygen evolution reaction; Urea oxidation reaction; p-p heterojunction; Built-in electric field; Local charge redistribution; EFFICIENT ELECTROCATALYST; SPIN-STATE; METAL; NANOSPHERES; CATALYSTS; COMPOSITE;
D O I
10.1016/j.apcatb.2021.120638
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Heterogeneous electrocatalysis usually involves the charge transfer between the surface of electrocatalysts and corresponding reactants. Thus, modulating the surface electron density of electrocatalysts is an effective strategy to boost the electrocatalytic activity of targeted reactions. Herein, the NiSe2/FeSe2 p-p heterojunction is constructed via a simple selenization method for both oxygen evolution reaction (OER) and urea oxidation reaction (UOR). The designed NiSe2/FeSe2 electrocatalyst exhibits a superior activity towards OER, which only requires a low overpotential of 256 mV to reach a current density of 10 mA cm(-2), and surpasses other selenides and even the state-of-the-art RuO2. Impressively, when employed as the UOR electrode, the NiSe2/FeSe2 heterojunction needs only 127 mV overpotential at 50 mA cm(-2), remarkably superior to other selenides and confirming the less energy consumption for UOR. The comprehensive analysis demonstrates that the well-designed built-in electric field at the heterointerface of NiSe2/FeSe2 p-p heterojunction due to the difference of energy levels can expedite the charge transfer and thus strengthen the conductivity of heterojunction electrocatalyst. Moreover, the self-driven electron transfer across the NiSe2/FeSe2 heterointerface can induce local charge redistribution at the interface region, which is beneficial for the adsorption of OH- and urea owing to the electrostatic interaction. Therefore, the designed NiSe2/FeSe2 p-p heterojunction with regulated electronic structure displays extraordinary electrocatalytic activity for both the OER and UOR. This study demonstrates a novel strategy to manipulate the surface/interface charge states of electrocatalysts for improving the catalytic activity of OER and UOR, and provides new guidelines for exploring other superior electrocatalysts.
引用
收藏
页数:10
相关论文
共 57 条
[1]   Engineering the surface charge states of nanostructures for enhanced catalytic performance [J].
Bai, Yu ;
Huang, Hao ;
Wang, Chengming ;
Long, Ran ;
Xiong, Yujie .
MATERIALS CHEMISTRY FRONTIERS, 2017, 1 (10) :1951-1964
[2]   Hierarchical trimetallic Co-Ni-Fe oxides derived from core-shell structured metal-organic frameworks for highly efficient oxygen evolution reaction [J].
Chen, Chen ;
Tuo, Yongxiao ;
Lu, Qing ;
Lu, Han ;
Zhang, Shengyang ;
Zhou, Yan ;
Zhang, Jun ;
Liu, Zhanning ;
Kang, Zixi ;
Feng, Xiang ;
Chen, De .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 287
[3]   Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion [J].
Chen, Junsheng ;
Wei, Li ;
Mahmood, Asif ;
Pei, Zengxia ;
Zhou, Zheng ;
Chen, Xuncai ;
Chen, Yuan .
ENERGY STORAGE MATERIALS, 2020, 25 :585-612
[4]   Interface engineered NiFe2O4-x/NiMoO4 nanowire arrays for electrochemical oxygen evolution [J].
Choi, Juhyung ;
Kim, Daekyu ;
Zheng, Weiran ;
Yan, Bingyi ;
Li, Yong ;
Lee, Lawrence Yoon Suk ;
Piao, Yuanzhe .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 286
[5]   Tailoring Rod-Like FeSe2 Coated with Nitrogen-Doped Carbon for High-Performance Sodium Storage [J].
Ge, Peng ;
Hou, Hongshuai ;
Li, Sijie ;
Yang, Li ;
Ji, Xiaobo .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (30)
[6]   Synthesis of Sub-2nm Iron-Doped NiSe2 Nanowires and Their Surface-Confined Oxidation for Oxygen Evolution Catalysis [J].
Gu, Chao ;
Hu, Shaojin ;
Zheng, Xusheng ;
Gao, Min-Rui ;
Zheng, Ya-Rong ;
Shi, Lei ;
Gao, Qiang ;
Zheng, Xiao ;
Chu, Wangsheng ;
Yao, Hong-Bin ;
Zhu, Junfa ;
Yu, Shu-Hong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (15) :4020-4024
[7]   Utilizing the Space-Charge Region of the FeNi-LDH/CoP p-n Junction to Promote Performance in Oxygen Evolution Electrocatalysis [J].
He, Kai ;
Tsega, Tsegaye Tadesse ;
Liu, Xi ;
Zai, Jiantao ;
Li, Xin-Hao ;
Liu, Xuejiao ;
Li, Wenhao ;
Ali, Nazakat ;
Qian, Xuefeng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (34) :11903-11909
[8]   Multiphase Ni-Fe-selenide nanosheets for highly-efficient and ultra-stable water electrolysis [J].
Huang, Jun ;
Wen, Shuting ;
Chen, Guangliang ;
Chen, Wei ;
Wang, Guoxu ;
Fan, Huafeng ;
Chen, Dongliang ;
Song, Changsheng ;
Li, Mengchao ;
Wang, Xingquan ;
Li, Leliang ;
Tao, Mengping ;
Li, Bojia ;
Wang, Xinghua ;
Ostrikov, Kostya .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 277
[9]   Composition Engineering Boosts Voltage Windows for Advanced Sodium-Ion Batteries [J].
Jiang, Yunling ;
Zou, Guoqiang ;
Hou, Hongshuai ;
Li, Jiayang ;
Liu, Cheng ;
Qiu, Xiaoqing ;
Ji, Xiaobo .
ACS NANO, 2019, 13 (09) :10787-10797
[10]   Local Charge Distribution Engineered by Schottky Heterojunctions toward Urea Electrolysis [J].
Li, Caicai ;
Liu, Youwen ;
Zhuo, Zhiwen ;
Ju, Huanxin ;
Li, Dian ;
Guo, Yanpeng ;
Wu, Xiaojun ;
Li, Huiqiao ;
Zhai, Tianyou .
ADVANCED ENERGY MATERIALS, 2018, 8 (27)