GelMA Hydrogel Reinforced with 3D Printed PEGT/PBT Scaffolds for Supporting Epigenetically-Activated Human Bone Marrow Stromal Cells for Bone Repair

被引:10
作者
Man, Kenny [1 ,2 ]
Alcala, Cesar [3 ]
Mekhileri, Naveen V. [3 ]
Lim, Khoon S. [3 ]
Jiang, Lin-Hua [4 ]
Woodfield, Tim B. F. [3 ]
Yang, Xuebin B. [1 ]
机构
[1] Univ Leeds, Sch Dent, Biomat & Tissue Engn Grp, Leeds LS9 7TF, W Yorkshire, England
[2] Univ Birmingham, Sch Chem Engn, Edgbaston, Birmingham B15 2TT, W Midlands, England
[3] Univ Otago Christchurch, Dept Orthopaed Surg, CReaTE Grp, Christchurch 8011, New Zealand
[4] Univ Leeds, Sch Biomed Sci, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
HDAC inhibitor; MI192; epigenetics; hydrogel; GelMA; 3D printing; bone; tissue engineering; STEM-CELLS; OSTEOGENIC DIFFERENTIATION; IN-VITRO; FABRICATION; PROMOTES; GROWTH;
D O I
10.3390/jfb13020041
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Epigenetic approaches using the histone deacetylase 2 and 3 inhibitor-MI192 have been reported to accelerate stem cells to form mineralised tissues. Gelatine methacryloyl (GelMA) hydrogels provide a favourable microenvironment to facilitate cell delivery and support tissue formation. However, their application for bone repair is limited due to their low mechanical strength. This study aimed to investigate a GelMA hydrogel reinforced with a 3D printed scaffold to support MI192-induced human bone marrow stromal cells (hBMSCs) for bone formation. Cell culture: The GelMA (5 wt%) hydrogel supported the proliferation of MI192-pre-treated hBMSCs. MI192-pre-treated hBMSCs within the GelMA in osteogenic culture significantly increased alkaline phosphatase activity (p <= 0.001) compared to control. Histology: The MI192-pre-treated group enhanced osteoblast-related extracellular matrix deposition and mineralisation (p <= 0.001) compared to control. Mechanical testing: GelMA hydrogels reinforced with 3D printed poly(ethylene glycol)-terephthalate/poly(butylene terephthalate) (PEGT/PBT) scaffolds exhibited a 1000-fold increase in the compressive modulus compared to the GelMA alone. MI192-pre-treated hBMSCs within the GelMA-PEGT/PBT constructs significantly enhanced extracellular matrix collagen production and mineralisation compared to control (p <= 0.001). These findings demonstrate that the GelMA-PEGT/PBT construct provides enhanced mechanical strength and facilitates the delivery of epigenetically-activated MSCs for bone augmentation strategies.
引用
收藏
页数:16
相关论文
共 50 条
[21]   The Use of Catalytic Carbon Deposits as 3D Carriers for Human Bone Marrow Stromal Cells [J].
Yu. A. Petrenko ;
I. V. Gurin ;
N. A. Volkova ;
S. P. Mazur ;
B. P. Sandomirskii .
Bulletin of Experimental Biology and Medicine, 2011, 151 :539-542
[22]   Collagen silver-doped hydroxyapatite scaffolds reinforced with 3D printed frameworks for infection prevention and enhanced repair of load-bearing bone defects [J].
Genoud, Katelyn J. ;
Sadowska, Joanna M. ;
Power, Rachael N. ;
Costard, Lara S. ;
Ryan, Emily J. ;
Matherson, Austyn R. ;
Gonzalez-Vazquez, Arlyng G. ;
Lemoine, Mark ;
Echholz, Kian ;
Pitacco, Pierluca ;
Chen, Gang ;
Cavanagh, Brenton ;
Garcia, Orquidea ;
Murphy, Ciara M. ;
Curtin, Caroline M. ;
Kelly, Daniel J. ;
O'Brien, Fergal J. .
BIOFABRICATION, 2025, 17 (02)
[23]   Adhesion and growth of human bone marrow mesenchymal stem cells on precise-geometry 3D organic-inorganic composite scaffolds for bone repair [J].
Chatzinikolaidou, Maria ;
Rekstyte, Sima ;
Danilevicius, Paulius ;
Pontikoglou, Charalampos ;
Papadaki, Helen ;
Farsari, Maria ;
Vamvakaki, Maria .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2015, 48 :301-309
[24]   Genetically-programmed, mesenchymal stromal cell-laden & mechanically strong 3D bioprinted scaffolds for bone repair [J].
Abu Awwad, Hosam Al-Deen M. ;
Thiagarajan, Lalitha ;
Kanczler, Janos M. ;
Amer, Mahetab H. ;
Bruce, Gordon ;
Lanham, Stuart ;
Rumney, Robin M. H. ;
Oreffo, Richard O. C. ;
Dixon, James E. .
JOURNAL OF CONTROLLED RELEASE, 2020, 325 :335-346
[25]   Mechanical Stimulation Promotes Osteogenic Differentiation of Human Bone Marrow Stromal Cells on 3-D Partially Demineralized Bone Scaffolds In Vitro [J].
J. R. Mauney ;
S. Sjostorm ;
J. Blumberg ;
R. Horan ;
J. P. O’Leary ;
G. Vunjak-Novakovic ;
V. Volloch ;
D. L. Kaplan .
Calcified Tissue International, 2004, 74 :458-468
[26]   Adenoviral Mediated Expression of BMP2 by Bone Marrow Stromal Cells Cultured in 3D Copolymer Scaffolds Enhances Bone Formation [J].
Sharma, Sunita ;
Sapkota, Dipak ;
Xue, Ying ;
Sun, Yang ;
Finne-Wistrand, Anna ;
Bruland, Ove ;
Mustafa, Kamal .
PLOS ONE, 2016, 11 (01)
[27]   Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro [J].
Mauney, JR ;
Sjostorm, S ;
Blumberg, J ;
Horan, R ;
O'Leary, JP ;
Vunjak-Novakovic, G ;
Volloch, V ;
Kaplan, DL .
CALCIFIED TISSUE INTERNATIONAL, 2004, 74 (05) :458-468
[28]   Addition of Bone-Marrow Mesenchymal Stem Cells to 3D-Printed Alginate/Gelatin Hydrogel Containing Freeze-Dried Bone Nanoparticles Accelerates Regeneration of Critical Size Bone Defects [J].
Bastami, Farshid ;
Safavi, Seyedeh-Mina ;
Seifi, Sina ;
Nadjmi, Nasser ;
Khojasteh, Arash .
MACROMOLECULAR BIOSCIENCE, 2024, 24 (03)
[29]   Fabrication and evaluation of 3D printed BCP scaffolds reinforced with ZrO2 for bone tissue applications [J].
Sa, Min-Woo ;
Nguyen, Bao-Ngoc B. ;
Moriarty, Rebecca A. ;
Kamalitdinov, Timur ;
Fisher, John P. ;
Kim, Jong Young .
BIOTECHNOLOGY AND BIOENGINEERING, 2018, 115 (04) :989-999
[30]   Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects [J].
Roohani-Esfahani, Seyed-Iman ;
Newman, Peter ;
Zreiqat, Hala .
SCIENTIFIC REPORTS, 2016, 6