T-ZrS2 nanoribbons: structure and electronic properties

被引:7
作者
Ersan, Fatih [1 ]
Kadioglu, Yelda [1 ]
Gokoglu, Gokhan [2 ]
Akturk, Olcay Uzengi [1 ,3 ]
Akturk, Ethem [1 ,3 ]
机构
[1] Adnan Menderes Univ, Dept Phys, Aydin, Turkey
[2] Karabuk Univ, Dept Phys, Karabuk, Turkey
[3] Adnan Menderes Univ, Nanotechnol Applicat & Res Ctr, Aydin, Turkey
关键词
ZrS2; density functional theory; electronic structure; nanoribbon; TOTAL-ENERGY CALCULATIONS; QUANTUM PHASE SLIPS; METAL DICHALCOGENIDES; ZRS2; MONOLAYER; BAND-STRUCTURE; ZRX2; X; MOS2; TRANSITION; SE; SEMICONDUCTORS;
D O I
10.1080/14786435.2016.1189101
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently, monolayer and few layers of trigonal phases of zirconium disulfide ( T-ZrS2) sheets were obtained experimentally on hexagonal boron nitride using an evaporation technique. On the basis of these previous results, we report the structural and electronic properties of armchair nanoribbons ( ANRs) and zigzag nanoribbons ( ZNRs) of T-ZrS2 by means of density functional theory. According to our results, both ANRs and ZNRs are nonmagnetic semiconductors similar to a two-dimensional T-ZrS2 monolayer. The semiconducting character is not altered by termination of the edge atoms with hydrogen. The band gaps are associated with the ribbon widths and edge structures. The band gaps of bare and H-terminated ANR-ZrS2 decrease exponentially, whereas the band gaps of ultra-narrow zigzag nanoribbons oscillate slightly with increasing ribbon width. Although the band gaps of bare ANRs approach that of 2D T-ZrS2, other structures have larger band gaps than the monolayer with increasing ribbon width. The cohesive and formation energies of bare ANRs and ZNRs converge rapidly to that of the 2D T-ZrS2 structure with increasing ribbon width.
引用
收藏
页码:2074 / 2087
页数:14
相关论文
共 66 条
[1]   Electronic structure of layer type tungsten metal dichalcogenides WX2 (X = S, Se) using Compton spectroscopy: Theory and experiment [J].
Arora, Gunjan ;
Sharma, Yamini ;
Sharma, Vinit ;
Ahmed, Gulzar ;
Srivastava, S. K. ;
Ahuja, B. L. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 470 (1-2) :452-460
[2]   Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure [J].
Ataca, C. ;
Sahin, H. ;
Ciraci, S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (16) :8983-8999
[3]   Electronic band structure of the layered compound Td-WTe2 [J].
Augustin, J ;
Eyert, V ;
Böker, T ;
Frentrup, W ;
Dwelk, H ;
Janowitz, C ;
Manzke, R .
PHYSICAL REVIEW B, 2000, 62 (16) :10812-10823
[4]   Electronic structure and stability of semiconducting graphene nanoribbons [J].
Barone, Veronica ;
Hod, Oded ;
Scuseria, Gustavo E. .
NANO LETTERS, 2006, 6 (12) :2748-2754
[5]   Quantum suppression of superconductivity in ultrathin nanowires [J].
Bezryadin, A ;
Lau, CN ;
Tinkham, M .
NATURE, 2000, 404 (6781) :971-974
[6]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[7]   Nanocasting synthesis of ordered mesoporous crystalline WSe2 as anode material for Li-ion batteries [J].
Chen, Fujie ;
Wang, Jun ;
Li, Bin ;
Yao, Chaohua ;
Bao, Haifeng ;
Shi, Yifeng .
MATERIALS LETTERS, 2014, 136 :191-194
[8]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/nchem.1589, 10.1038/NCHEM.1589]
[9]   First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers [J].
Ding, Yi ;
Wang, Yanli ;
Ni, Jun ;
Shi, Lin ;
Shi, Siqi ;
Tang, Weihua .
PHYSICA B-CONDENSED MATTER, 2011, 406 (11) :2254-2260
[10]   Two-Dimensional Crystals: Managing Light for Optoelectronics [J].
Eda, Goki ;
Maier, Stefan A. .
ACS NANO, 2013, 7 (07) :5660-5665