Origin of the Diffusion-Related Optical Degradation of 1.3 μm Inas QD-LDs Epitaxially Grown on Silicon Substrate

被引:8
作者
Buffolo, Matteo [1 ]
Lain, Federico [1 ]
Zenari, M. [1 ]
De Santi, Carlo [1 ]
Norman, Justin [3 ,4 ]
Bowers, John E. [2 ]
Herrick, Robert W. [5 ]
Meneghesso, Gaudenzio [1 ]
Zanoni, Enrico [1 ]
Meneghini, Matteo [1 ]
机构
[1] Univ Padua, Dept Informat Engn, I-35131 Padua, Italy
[2] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[3] UCSB, Santa Barbara, CA USA
[4] Quintessent Inc, Santa Barbara, CA 93102 USA
[5] Intel Corp, Santa Clara, CA 95054 USA
关键词
Quantum-dots; semiconductor lasers; reliability; diffusion processes; beryllium; GAAS; LASER; SI; PHOTOLUMINESCENCE; MECHANISMS; BERYLLIUM; ZINC;
D O I
10.1109/JSTQE.2021.3091960
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper investigates the origin of the diffusion process responsible for the optical degradation of InAs quantum dot (QD) laser diodes epitaxially grown on silicon. By means of a series of constant-current stress experiments carried out at different temperatures, we were able to quantitatively evaluate the temperature acceleration of the degradation process. In addition, the presence of temperature thresholds above which the degradation rate drastically increases was ascribed to the onset of a recombination-enhanced degradation process, which is favored at high temperatures. Finally, the comparison of the experimentally determined diffusion coefficients with prior scientific reports suggests that degradation is related to the recombination-enhanced diffusion of Be, used here as p-type dopant, or of the lattice defects limiting Be diffusion. The original results of this work provide new insight on the microscopic origin of the gradual optical degradation of quantum-dot lasers, which will find wide application in silicon photonics.
引用
收藏
页数:9
相关论文
共 40 条
[31]   BERYLLIUM DELTA-DOPING OF GAAS GROWN BY MOLECULAR-BEAM EPITAXY [J].
SCHUBERT, EF ;
KUO, JM ;
KOPF, RF ;
LUFTMAN, HS ;
HOPKINS, LC ;
SAUER, NJ .
JOURNAL OF APPLIED PHYSICS, 1990, 67 (04) :1969-1979
[32]   SPATIAL LOCALIZATION AND DIFFUSION OF ATOMIC SILICON IN DELTA-DOPED GAAS [J].
SCHUBERT, EF ;
CHIU, TH ;
CUNNINGHAM, JE ;
TELL, B ;
STARK, JB .
JOURNAL OF ELECTRONIC MATERIALS, 1988, 17 (06) :527-531
[33]   1.3 μm InAs quantum dot laser with To=161 K from 0 to 80 °C [J].
Shchekin, OB ;
Deppe, DG .
APPLIED PHYSICS LETTERS, 2002, 80 (18) :3277-3279
[34]   PHOTOLUMINESCENCE FROM ANNEALED SEMI-INSULATING GAAS CRYSTALS - THE 1.360-EV BAND [J].
SWAMINATHAN, V ;
CARUSO, R ;
PEARTON, SJ .
JOURNAL OF APPLIED PHYSICS, 1988, 63 (06) :2164-2167
[35]   LOW-TEMPERATURE WAFER DIRECT BONDING [J].
TONG, QY ;
CHA, GH ;
GAFITEANU, R ;
GOSELE, U .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 1994, 3 (01) :29-35
[36]   Full Optical Contactless Thermometry Based on LED Photoluminescence [J].
Trivellin, Nicola ;
Buffolo, Matteo ;
De Santi, Carlo ;
Meneghini, Matteo ;
Forzan, Michele ;
Dughiero, Fabrizio ;
Zanoni, Enrico ;
Meneghesso, Gaudenzio .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
[37]   RECOMBINATION-ENHANCED IMPURITY DIFFUSION IN BE-DOPED GAAS [J].
UEMATSU, M ;
WADA, K .
APPLIED PHYSICS LETTERS, 1991, 58 (18) :2015-2017
[38]   Ga self-diffusion in GaAs isotope heterostructures [J].
Wang, L ;
Hsu, L ;
Haller, EE ;
Erickson, JW ;
Fischer, A ;
Eberl, K ;
Cardona, M .
PHYSICAL REVIEW LETTERS, 1996, 76 (13) :2342-2345
[39]   Identification of the dissociative and kick-out diffusion mechanisms of Zn diffusion in GaAs by photoluminescence analysis [J].
Ye, Hong ;
Tang, Liangliang ;
Ni, Qing .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2015, 197 :1-4
[40]   DIFFUSION MECHANISM OF ZINC AND BERYLLIUM IN GALLIUM-ARSENIDE [J].
YU, S ;
TAN, TY ;
GOSELE, U .
JOURNAL OF APPLIED PHYSICS, 1991, 69 (06) :3547-3565