Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials

被引:387
作者
Das Mahapatra, Susmriti [1 ]
Mohapatra, Preetam Chandan [1 ]
Aria, Adrianus Indrat [2 ]
Christie, Graham [3 ]
Mishra, Yogendra Kumar [4 ]
Hofmann, Stephan [5 ]
Thakur, Vijay Kumar [6 ,7 ]
机构
[1] Intel Corp, Technol & Mfg Grp, 5000 West Chandler Blvd, Chandler, AZ 85226 USA
[2] Cranfield Univ, Sch Aerosp Transport & Mfg, Surface Engn & Precis Ctr, Cranfield MK43 0AL, Beds, England
[3] Univ Cambridge, Dept Chem Engn & Biotechnol, Inst Biotechnol, Cambridge CB2 1QT, England
[4] Univ Southern Denmark, NanoSYD, Mads Clausen Inst, Alsion 2, DK-6400 Sonderborg, Denmark
[5] Univ Cambridge, Dept Engn, Div Elect Engn, Cambridge CB2 1PZ, England
[6] Scotlands Rural Coll SRUC, Biorefining & Adv Mat Res Ctr, Kings Bldg, Edinburgh EH9 3JG, Midlothian, Scotland
[7] Shiv Nadar Univ, Sch Engn, Dept Mech Engn, Delhi 201314, Uttar Pradesh, India
基金
英国工程与自然科学研究理事会; “创新英国”项目;
关键词
energy harvesting; flexible devices; nanostructured materials; piezoelectric nanogenerator; polymer nanocomposites; polyvinylidene fluoride copolymers; PVDF/GRAPHENE COMPOSITE NANOFIBERS; ELECTROSPUN PVDF NANOFIBERS; FERROELECTRIC PHASE CONTENT; ELECTROACTIVE BETA-PHASE; SELF-POWERED SENSOR; POLY(VINYLIDENE FLUORIDE); VINYLIDENE FLUORIDE; POLYVINYLIDENE FLUORIDE; MECHANICAL ENERGY; THIN-FILM;
D O I
10.1002/advs.202100864
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Piezoelectric materials are widely referred to as "smart" materials because they can transduce mechanical pressure acting on them to electrical signals and vice versa. They are extensively utilized in harvesting mechanical energy from vibrations, human motion, mechanical loads, etc., and converting them into electrical energy for low power devices. Piezoelectric transduction offers high scalability, simple device designs, and high-power densities compared to electro-magnetic/static and triboelectric transducers. This review aims to give a holistic overview of recent developments in piezoelectric nanostructured materials, polymers, polymer nanocomposites, and piezoelectric films for implementation in energy harvesting. The progress in fabrication techniques, morphology, piezoelectric properties, energy harvesting performance, and underpinning fundamental mechanisms for each class of materials, including polymer nanocomposites using conducting, non-conducting, and hybrid fillers are discussed. The emergent application horizon of piezoelectric energy harvesters particularly for wireless devices and self-powered sensors is highlighted, and the current challenges and future prospects are critically discussed.
引用
收藏
页数:73
相关论文
共 440 条
[1]   Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites-A Review [J].
Ab Rahman, Ismail ;
Padavettan, Vejayakumaran .
JOURNAL OF NANOMATERIALS, 2012, 2012
[2]   The piezoelectric response of electrospun PVDF nanofibers with graphene oxide, graphene, and halloysite nanofillers: a comparative study [J].
Abbasipour, Mina ;
Khajavi, Ramin ;
Yousefi, Ali Akbar ;
Yazdanshenas, Mohammad Esmail ;
Razaghian, Farhad .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (21) :15942-15952
[3]   0.8 V nanogenerator for mechanical energy harvesting using bismuth titanate-PDMS nanocomposite [J].
Abinnas, N. ;
Baskaran, P. ;
Harish, S. ;
Ganesh, R. Sankar ;
Navaneethan, M. ;
Nisha, K. D. ;
Ponnusamy, S. ;
Muthamizhchelvan, C. ;
Ikeda, H. ;
Hayakawa, Y. .
APPLIED SURFACE SCIENCE, 2017, 418 :362-368
[4]   PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators [J].
Abolhasani, Mohammad Mahdi ;
Shirvanimoghaddam, Kamyar ;
Naebe, Minoo .
COMPOSITES SCIENCE AND TECHNOLOGY, 2017, 138 :49-56
[5]   Development of three-dimensional piezoelectric polyvinylidene fluoride-graphene oxide scaffold by non-solvent induced phase separation method for nerve tissue engineering [J].
Abzan, Nadia ;
Kharaziha, Mahshid ;
Labbaf, Sheyda .
MATERIALS & DESIGN, 2019, 167
[6]   Modeling piezoelectric actuators [J].
Adriaens, HJMTA ;
de Koning, WL ;
Banning, R .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2000, 5 (04) :331-341
[7]   A comparative approach to predicting effective dielectric, piezoelectric and elastic properties of PZT/PVDF composites [J].
Ahmad, Zeeshan ;
Prasad, Ashutosh ;
Prasad, K. .
PHYSICA B-CONDENSED MATTER, 2009, 404 (20) :3637-3644
[8]   Copolymerization of vinylidene fluoride with hexafluoropropylene in supercritical carbon dioxide [J].
Ahmed, TS ;
DeSimone, JM ;
Roberts, GW .
MACROMOLECULES, 2006, 39 (01) :15-18
[9]   Enhanced Piezoelectric Properties of Electrospun Poly(vinylidene fluoride)/Multiwalled Carbon Nanotube Composites Due to High β-Phase Formation in Poly(vinylidene fluoride) [J].
Ahn, Yongjin ;
Lim, Jun Young ;
Hong, Soon Man ;
Lee, Jaerock ;
Ha, Jongwook ;
Choi, Hyoung Jin ;
Seo, Yongsok .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (22) :11791-11799
[10]   Solid-state 19F MAS and 1H → 19F CP/MAS NMR study of the phase transition behavior of vinylidene fluoride-trifluoroethylene copolymers:: 1.: Uniaxially drawn films of VDF 75% copolymer [J].
Aimi, K ;
Ando, S ;
Avalle, P ;
Harris, RK .
POLYMER, 2004, 45 (07) :2281-2290