Dielectric interface conditions for general fourth-order finite difference

被引:4
作者
Yang, Bo [1 ]
Balanis, Constantine A. [1 ]
机构
[1] Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA
关键词
dielectric materials; finite difference time domain (FDTD) methods; higher-order; interface;
D O I
10.1109/LMWC.2007.901758
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, two dielectric interface conditions, for narrow- and broad-band simulations, are presented for the general fourth-order finite-difference stencil in the space domain. The effectiveness of both conditions is verified by numerical simulations.
引用
收藏
页码:559 / 561
页数:3
相关论文
共 50 条
  • [21] Magnetization boundary conditions at a ferromagnetic interface of finite thickness
    Kruglyak, V. V.
    Gorobets, O. Yu
    Gorobets, Yu I.
    Kuchko, A. N.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (40)
  • [22] Finite difference scheme for a higher order nonlinear Schrodinger equation
    Cavalcanti, Marcelo M.
    Correa, Wellington J.
    Sepulveda, Mauricio A. C.
    Vejar-Asem, Rodrigo
    CALCOLO, 2019, 56 (04)
  • [23] Rogue waves for the coupled variable-coefficient fourth-order nonlinear Schrodinger equations in an inhomogeneous optical fiber
    Du, Zhong
    Tian, Bo
    Chai, Han-Peng
    Sun, Yan
    Zhao, Xue-Hui
    CHAOS SOLITONS & FRACTALS, 2018, 109 : 90 - 98
  • [24] Non-Canonical Functional Differential Equation of Fourth-Order: New Monotonic Properties and Their Applications in Oscillation Theory
    Nabih, Amany
    Cesarano, Clemente
    Moaaz, Osama
    Anis, Mona
    Elabbasy, Elmetwally M.
    AXIOMS, 2022, 11 (11)
  • [25] Soliton excitations and interactions for the three-coupled fourth-order nonlinear Schrodinger equations in the alpha helical proteins
    Sun, Wen-Rong
    Tian, Bo
    Wang, Yu-Feng
    Zhen, Hui-Ling
    EUROPEAN PHYSICAL JOURNAL D, 2015, 69 (06)
  • [26] STABLE COUPLING OF NONCONFORMING, HIGH-ORDER FINITE DIFFERENCE METHODS
    Kozdon, Jeremy E.
    Wilcox, Lucas C.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (02) : A923 - A952
  • [27] Finite difference scheme for a higher order nonlinear Schrödinger equation
    Marcelo M. Cavalcanti
    Wellington J. Corrêa
    Mauricio A. Sepúlveda C.
    Rodrigo Véjar-Asem
    Calcolo, 2019, 56
  • [28] FINITE DIFFERENCE APPROXIMATION OF STRONG SOLUTIONS OF A PARABOLIC INTERFACE PROBLEM ON DISCONNECTED DOMAINS
    Jovanovic, Bosko S.
    Vulkov, Lubin G.
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2008, 84 (98): : 37 - 48
  • [29] A finite difference approach to the interface equation for some nonlinear diffusion equations with absorption
    Nakaki, T
    Tomoeda, K
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2001, 77 (02) : 32 - 37
  • [30] Finite element methods for second order linear hyperbolic interface problems
    Deka, Bhupen
    Sinha, Rajen Kumar
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (22) : 10922 - 10933