Neimark-Sacker bifurcation analysis on a numerical discretization of Gause-type predator prey model with delay

被引:18
作者
Jiang, Xiao-Wei [1 ,2 ]
Zhan, Xi-Sheng [2 ]
Guan, Zhi-Hong [1 ]
Zhang, Xian-He [2 ]
Yu, Li [3 ]
机构
[1] Huazhong Univ Sci & Technol, Coll Automat, Wuhan 430074, Peoples R China
[2] Hubei Normal Univ, Coll Mechatron & Control Engn, Huangshi 435002, Peoples R China
[3] Huazhong Univ Sci & Technol, Dept Elect & Informat Engn, Wuhan 430074, Peoples R China
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2015年 / 352卷 / 01期
基金
中国国家自然科学基金;
关键词
HOPF-BIFURCATION; SYSTEM; PERMANENCE; STABILITY;
D O I
10.1016/j.jfranklin.2014.09.022
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents Neimark-Sacker bifurcation analysis for a kind of discrete Gause-type predator-prey system with time delay, which is obtained by using Euler discretization method. For biological reasons, we are only interested in positive solutions of system, thus some parameter conditions are given for the existence of a unique positive fixed point. Then by choosing delay as bifurcation parameter, and analyzing the associated characteristic equation, we obtain stability result of the positive fixed point. It is also demonstrated that Neimark Sacker bifurcation occurs when the delay crosses some critical values. An explicit formula which determines the stability, direction and other properties of bifurcating periodic solution is derived by using the center manifold and normal form theory. Finally, a numerical example is given to support the analytic results. (C) 2014 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 27 条
[11]   Permanence and global attractivity of stage-structured predator-prey model with continuous harvesting on predator and impulsive stocking on prey [J].
Jiao Jian-jun ;
Chen Lan-sun ;
Nieto, Juan J. ;
Angela, Torres .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2008, 29 (05) :653-663
[12]   Hopf bifurcation control via a dynamic state-feedback control [J].
Le Hoa Nguyen ;
Hong, Keum-Shik .
PHYSICS LETTERS A, 2012, 376 (04) :442-446
[13]   Hopf bifurcation control in the XCP for the Internet congestion control system [J].
Liu, Feng ;
Wang, Hua O. ;
Guan, Zhi-Hong .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (03) :1466-1479
[14]   Complex dynamic behaviors of a discrete-time predator-prey system [J].
Liu, Xiaoli ;
Xiao, Dongmei .
CHAOS SOLITONS & FRACTALS, 2007, 32 (01) :80-94
[15]  
Lotka A. J., 1956, Elements of Mathematical Biology, DOI DOI 10.2307/1909476
[16]   THE SUBCRITICAL COLLAPSE OF PREDATOR POPULATIONS IN DISCRETE-TIME PREDATOR-PREY MODELS [J].
NEUBERT, MG ;
KOT, M .
MATHEMATICAL BIOSCIENCES, 1992, 110 (01) :45-66
[17]   BIFURCATIONS OF A HOLLING-TYPE II PREDATOR-PREY SYSTEM WITH CONSTANT RATE HARVESTING [J].
Peng, Guojun ;
Jiang, Yaolin ;
Li, Changpin .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (08) :2499-2514
[18]  
Ruan SG, 2003, DYNAM CONT DIS SER A, V10, P863
[19]  
Volterra V., 1962, OPERE MATEMATICHE ME, Vv
[20]   Permanence and periodic solution of predator-prey system with holling type functional response and impulses [J].
Wang, Weibing ;
Shen, Jianhua ;
Nieto, Juan J. .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2007, 2007