A stability theorem for lines in Galois planes of prime order

被引:4
作者
Szonyi, Tamas [1 ,2 ]
Weiner, Zsuzsa [1 ,3 ]
机构
[1] Eotvos Lorand Univ, Dept Comp Sci, H-1117 Budapest, Hungary
[2] Hungarian Acad Sci, Comp & Automat Res Inst, H-1111 Budapest, Hungary
[3] Prezi Com, H-1075 Budapest, Hungary
关键词
Finite geometry; Galois planes; Blocking sets; Stability theorem; BLOCKING SETS;
D O I
10.1007/s10623-011-9495-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we prove that a point set of size less than 3/2 (q + 1) in in PG(2, q), q prime, that has relatively few 0-secants must contain many collinear points. More precise bounds can be found in Theorem 4.
引用
收藏
页码:103 / 108
页数:6
相关论文
共 10 条
[1]  
[Anonymous], 1973, INFINITE FINITE SETS
[2]   BLOCKING SETS IN DESARGUESIAN PROJECTIVE-PLANES [J].
BLOKHUIS, A ;
BROUWER, AE .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1986, 18 :132-134
[3]   Covering all points except one [J].
Blokhuis, A. ;
Brouwer, A. E. ;
Szonyi, T. .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (01) :59-66
[4]   ON THE SIZE OF A BLOCKING SET IN PG(2,P) [J].
BLOKHUIS, A .
COMBINATORICA, 1994, 14 (01) :111-114
[5]   BLOCKING NUMBER OF AN AFFINE SPACE [J].
BROUWER, AE ;
SCHRIJVER, A .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 24 (02) :251-253
[6]   BLOCKING SETS IN FINITE PROJECTIVE PLANES [J].
BRUEN, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1971, 21 (03) :380-&
[7]   BAER SUBPLANES AND BLOCKING SETS [J].
BRUEN, A .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 76 (02) :342-&
[8]  
Gacs T., 2003, J GEOM, V76, P256
[9]   COVERING FINITE-FIELDS WITH COSETS OF SUBSPACES [J].
JAMISON, RE .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1977, 22 (03) :253-266
[10]   Around Redei's theorem [J].
Szönyi, T .
DISCRETE MATHEMATICS, 1999, 208 :557-575