Homothetic tube model predictive control

被引:157
作者
Rakovic, Sasa V. [1 ]
Kouvaritakis, Basil [3 ]
Findeisen, Rolf [2 ,4 ]
Cannon, Mark [3 ,5 ]
机构
[1] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA
[2] Univ Magdeburg, Inst Automat Engn, D-39106 Magdeburg, Germany
[3] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
[4] Univ Magdeburg, Inst Automat, Syst Theory & Control Lab, D-39106 Magdeburg, Germany
[5] Univ Oxford, St Johns Coll, Oxford, England
关键词
Tube model predictive control; Set invariance; Set-dynamics; DISCRETE-TIME-SYSTEMS; LINEAR-SYSTEMS; INVARIANT-SETS; DISTURBANCES; CONSTRAINTS; STATE;
D O I
10.1016/j.automatica.2012.05.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The robust model predictive control for constrained linear discrete time systems is solved through the development of a homothetic tube model predictive control synthesis method. The method employs several novel features including a more general parameterization of the state and control tubes based on homothety and invariance, a more flexible form of the terminal constraint set and a relaxation of the controlled dynamics of the sets that define the state and control tubes. Under natural assumptions, the proposed method is computationally efficient and it induces strong system theoretic properties. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1631 / 1638
页数:8
相关论文
共 23 条
[11]   Theory and computation of disturbance invariant sets for discrete-time linear systems [J].
Kolmanovsky, I ;
Gilbert, EG .
MATHEMATICAL PROBLEMS IN ENGINEERING, 1998, 4 (04) :317-367
[12]   Constrained receding horizon predictive control for nonlinear systems [J].
Lee, YI ;
Kouvaritakis, B ;
Cannon, M .
AUTOMATICA, 2002, 38 (12) :2093-2102
[13]   Robust output feedback model predictive control of constrained linear systems: Time varying case [J].
Mayne, D. Q. ;
Rakovic, S. V. ;
Findeisen, R. ;
Allgoewer, F. .
AUTOMATICA, 2009, 45 (09) :2082-2087
[14]   Robust model predictive control of constrained linear systems with bounded disturbances [J].
Mayne, DQ ;
Seron, MM ;
Rakovic, SV .
AUTOMATICA, 2005, 41 (02) :219-224
[15]   Optimized robust control invariance for linear discrete-time systems: Theoretical foundations [J].
Rakovic, S. V. ;
Kerrigan, E. C. ;
Mayne, D. Q. ;
Kouramas, K. I. .
AUTOMATICA, 2007, 43 (05) :831-841
[16]  
Rakovic S.V., 2010, P 19 MTNS S BUD HUNG
[17]   Parameterized Robust Control Invariant Sets for Linear Systems: Theoretical Advances and Computational Remarks [J].
Rakovic, Sasa V. ;
Baric, Miroslav .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (07) :1599-1614
[18]  
Rakovic SV, 2009, LECT NOTES CONTR INF, V384, P41, DOI 10.1007/978-3-642-01094-1_3
[19]   Invariant approximations of the minimal robust. positively invariant set [J].
Rakovic, SV ;
Kerrigan, EC ;
Kouramas, KI ;
Mayne, DQ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (03) :406-410
[20]  
Rakovic SV., 2009, 231209 OUEL U OXF