Lithium dual uptake anode materials: crystalline Fe3O4 nanoparticles supported over graphite for lithium-ion batteries

被引:19
作者
Victoria Bracamonte, M. [1 ]
Primo, Emiliano N. [1 ]
Luque, Guillermina L. [2 ]
Venosta, Lisandro [1 ]
Bercoff, Paula G. [1 ]
Barraco, Daniel E. [1 ]
机构
[1] Univ Nacl Cordoba, CONICET, Fac Matemat Astron & Fis, IFEG, Ciudad Univ,X5000HUA, Cordoba, Argentina
[2] Univ Nacl Cordoba, CONICET, Fac Ciencias Quim, INFIQC,Dept Quim Teor & Computac, Ciudad Univ,X5000HUA, Cordoba, Argentina
关键词
Fe3O4; nanoparticles; Graphite; Dual anodes; Lithium-ion batteries; Hybrid materials; IMPROVED ELECTROCHEMICAL PERFORMANCE; POLYHEDRAL MAGNETITE NANOCRYSTALS; REDUCED GRAPHENE OXIDE; FACILE SYNTHESIS; HOLLOW SPHERES; ELECTRODE; STORAGE; INTERCALATION; FABRICATION; CONVERSION;
D O I
10.1016/j.electacta.2017.10.034
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Graphite, the usual anode material for current technology of lithium ion batteries (LIB), has great advantages and its processing is widely known and industrially feasible. For improving the anode's capacity, recent research has focused in using nano-carbons as an overcoming strategy rather than including cheap, conversion-type oxide metals. Here, we present the application of in-situ synthesized hybrid LIB active anode materials composed of magnetite nanoparticles (Fe3O4 NPs) and graphite of different sizes. The results show that the graphite's flake size plays an important role in the Fe3O4 NPs deposition and loading, and therefore in the morphology of the resulting laminate film. The electrochemical performance (evaluated by cyclic voltammetry, galvanostatic charge/discharge cycles and impedance spectroscopy) is determined not only by the edge density of graphite flakes and Fe3O4 loading but also by the porosity of the anode films. The hybrid material electrode with smallest graphite particle size shows the highest reversible capacity of 845 mA h g(-1), good rate capability and great cycling performance. This remarkable improvement in graphite's capacity is reached by only adding 16 wt% of magnetite to the carbon material. (c) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:192 / 199
页数:8
相关论文
共 50 条
[1]   Investigating the Complex Chemistry of Functional Energy Storage Systems: The Need for an Integrative, Multiscale (Molecular to Mesoscale) Perspective [J].
Abraham, Alyson ;
Housel, Lisa M. ;
Lininger, Christianna N. ;
Bock, David C. ;
Jou, Jeffrey ;
Wang, Feng ;
West, Alan C. ;
Marschilok, Amy C. ;
Takeuchi, Kenneth J. ;
Takeuchi, Esther S. .
ACS CENTRAL SCIENCE, 2016, 2 (06) :380-387
[2]   Overview on recent developments in energy storage: Mechanical, electrochemical and hydrogen technologies [J].
Amirante, Riccardo ;
Cassone, Egidio ;
Distaso, Elia ;
Tamburrano, Paolo .
ENERGY CONVERSION AND MANAGEMENT, 2017, 132 :372-387
[3]   Improved electrochemical performance of onion-like carbon coated magnetite nanocapsules as electromagnetic absorptive anode materials for lithium-ion batteries [J].
Bi, Nannan ;
Liu, Xianguo ;
Wu, Niandu ;
Cui, Caiyun ;
Sun, Yuping .
RSC ADVANCES, 2015, 5 (41) :32452-32459
[4]   Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes [J].
Bresser, Dominic ;
Passerini, Stefano ;
Scrosati, Bruno .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (11) :3348-3367
[5]   Nanocrystalline iron oxide based electroactive materials in lithium ion batteries: the critical role of crystallite size, morphology, and electrode heterostructure on battery relevant electrochemistry [J].
Bruck, Andrea M. ;
Cama, Christina A. ;
Gannett, Cara N. ;
Marschilok, Amy C. ;
Takeuchi, Esther S. ;
Takeuchi, Kenneth J. .
INORGANIC CHEMISTRY FRONTIERS, 2016, 3 (01) :26-40
[6]   Nitrogen-doped Mesoporous Carbon-encapsulation Urchin-like Fe3O4 as Anode Materials for High Performance Li-ions Batteries [J].
Chen, Ming ;
Shen, Xiao ;
Chen, Kaiyu ;
Wu, Qianhui ;
Zhang, Pengfei ;
Zhang, Xiue ;
Diao, Guowang .
ELECTROCHIMICA ACTA, 2016, 195 :94-105
[7]   Highly porous Fe3O4-Fe nanowires grown on C/TiC nanofiber arrays as the high performance anode of lithium-ion batteries [J].
Cheng, Kui ;
Yang, Fan ;
Ye, Ke ;
Zhang, Ying ;
Jiang, Xue ;
Yin, Jinling ;
Wang, Guiling ;
Cao, Dianxue .
JOURNAL OF POWER SOURCES, 2014, 258 :260-265
[8]   Temperature- and time-tuned morphological evolution of polyhedral magnetite nanocrystals and their facet-dependent high-rate performance for lithium-ion batteries [J].
Ding, Chuan ;
Zeng, Yanwei ;
Li, Rongjie ;
Zhang, Yuan ;
Zhao, Longfei .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 676 :347-355
[9]   Lithium-Ion Batteries with High Rate Capabilities [J].
Eftekhari, Ali .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (04) :2799-2816
[10]   Electrode-Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights [J].
Gauthier, Magali ;
Carney, Thomas J. ;
Grimaud, Alexis ;
Giordano, Livia ;
Pour, Nir ;
Chang, Hao-Hsun ;
Fenning, David P. ;
Lux, Simon F. ;
Paschos, Odysseas ;
Bauer, Christoph ;
Magia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Shao-Horn, Yang .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (22) :4653-4672