On the Stability of Lagrange Solutions in the Spatial Near-Circular Restricted Three-Body Problem

被引:1
作者
Markeev, A. P. [1 ,2 ]
机构
[1] Russian Acad Sci, Ishlinsky Inst Problems Mech, Moscow 119526, Russia
[2] Moscow Inst Aviat Technol, Moscow 125993, Russia
基金
俄罗斯科学基金会;
关键词
restricted three-body problem; triangular libration points; stability; TRIANGULAR POINTS; LIBRATION POINTS; PLANAR;
D O I
10.3103/S0025654421080124
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The restricted problem of three bodies (material points) is considered. The orbits of the main attracting bodies are assumed to be ellipses of small eccentricity, and the passively gravitating body during its motion can leave the plane of the orbits of the main bodies (spatial problem). The stability of body motion corresponding to triangular Lagrangian libration points is investigated. A characteristic feature of the spatial problem under study is the presence of resonance due to the equality of the Keplerian motion period of the main bodies and the linear oscillation period of the passively gravitating body in the direction perpendicular to the plane of their orbits. Using the methods of classical perturbation theory, Kolmogorov-Arnold-Moser (KAM) theory and computer algebra algorithms, the nonlinear problem of stability for most (in the Lebesgue-measure sense) initial conditions and formal stability (stability in any arbitrarily high finite approximation with respect to the coordinates and impulses of perturbed motion) are investigated.
引用
收藏
页码:1541 / 1549
页数:9
相关论文
共 44 条
[1]  
[Anonymous], 1985, TOPICS MODERN MATH P
[2]  
[Anonymous], 1977, Russian Mathematical Surveys
[3]  
[Anonymous], 1873, ESSAI PROBLEME TROIS
[4]  
Arnol'd V.I., 1989, MATH METHODS CLASSIC
[5]  
Arnold V., 1963, Rus. Math. Surv+, V18, P9, DOI [DOI 10.1070/RM1963V018N05ABEH004130, 10.1070/RM1963v018n05ABEH004130]
[6]  
Arnold V. I., 2006, Mathematical Aspects of Classical and Celestial Mechanics, DOI [10.1007/978-3-540-48926-9, DOI 10.1007/978-3-540-48926-9]
[7]  
Arnold V. I., 1963, RUSS MATH SURV, V18, P85, DOI [10.1070/RM1963v018n06ABEH001143, DOI 10.1070/RM1963V018N06ABEH001143]
[8]  
[Аверкиев Николай Федорович Averkiev Nikolay Fedorovich], 2008, [Известия высших учебных заведений. Приборостроение, Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie], V51, P66
[9]  
Bruno A. D., 1994, RESTRICTED 3 BODY PR, DOI [10.1515/9783110901733, DOI 10.1515/9783110901733]
[10]  
Bryuno A. D., 1967, Math. Notes, V1, P216, DOI 10.1007/BF01098887