Optimization of target alignment in inertial confinement fusion facilities based on redundant measurements

被引:0
作者
Lin, Weiheng [1 ,2 ]
Zhu, Jianqiang [1 ]
Ren, Lei [1 ]
Zhou, Yang [1 ]
Liu, Zhigang [1 ]
Cui, Wenhui [1 ,2 ]
Dong, Ziming [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Joint Lab High Power Laser & Phys, Shanghai, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Inertial confinement fusion; Target alignment; Laser system; Redundant measurement; Sensor fusion; DESIGN;
D O I
10.1016/j.fusengdes.2021.112964
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Target alignment technology is one of the most essential technologies in inertial confinement fusion facilities, and is directly related to the results of high-energy physics experiments. In this study, we examine the error in the target alignment scheme, classify the error based on the source and performance, minimize the error through redundant measurement methods (target fusion and sensor fusion), and improve the precision of the target alignment scheme. By integrating these methods, the alignment error of the target is considerably improved and the position uncertainty is reduced.
引用
收藏
页数:15
相关论文
共 26 条
[1]   Advanced fuel layering in line-moving, high-gain direct-drive cryogenic targets [J].
Aleksandrova, I., V ;
Koresheva, E. R. .
HIGH POWER LASER SCIENCE AND ENGINEERING, 2019, 7
[2]   The path to electrical energy using laser fusion [J].
Bodner, Stephen E. .
HIGH POWER LASER SCIENCE AND ENGINEERING, 2019, 7
[3]   Status of NIF laser and High power laser research at LLNL [J].
Bowers, Mark ;
Wisoff, Jeff ;
Herrmann, Mark ;
Anklam, Tom ;
Dawson, Jay ;
Di Nicola, Jean-Michel ;
Haefner, Constantin ;
Hermann, Mark ;
Larson, Doug ;
Marshall, Chris ;
Van Wonterghem, Bruno ;
Wegner, Paul .
HIGH POWER LASERS FOR FUSION RESEARCH IV, 2017, 10084
[4]   Analytical solution of uncertainty with the GUM method for a dynamic stereo vision measurement system [J].
Chen, Xiaoyun ;
Lin, Jiarui ;
Sun, Yanbiao ;
Ma, Huiyu ;
Zhu, Jigui .
OPTICS EXPRESS, 2021, 29 (06) :8967-8984
[5]   Very high stability systems: LMJ target alignment system and MTG imager test setup [J].
Compain, Eric ;
Maquet, Philippe ;
Kunc, Thierry ;
Marque, Julien ;
Lauer-Solelhac, Maxime ;
Delage, Laurent ;
Lanternier, Catherine .
OPTICAL SYSTEMS DESIGN 2015: OPTICAL DESIGN AND ENGINEERING VI, 2015, 9626
[6]   Sensor placement in active multistatic sonar networks [J].
Craparo, Emily M. ;
Karatas, Mumtaz ;
Kuhn, Tobias U. .
NAVAL RESEARCH LOGISTICS, 2017, 64 (04) :287-304
[7]   Beam and target alignment at the National Ignition Facility using the Target Alignment Sensor (TAS) [J].
Di Nicola, P. ;
Kalantar, D. ;
Mccarville, T. ;
Klingmann, J. ;
Alvarez, S. ;
Lowe-Webb, R. ;
Lawson, J. ;
Datte, P. ;
Danforth, P. ;
Schneider, M. ;
Di Nicola, J. -M. ;
Jackson, J. ;
Orth, C. ;
Azevedo, S. ;
Tommasini, R. ;
Manuel, A. ;
Wallace, R. .
TARGET DIAGNOSTICS PHYSICS AND ENGINEERING FOR INERTIAL CONFINEMENT FUSION, 2012, 8505
[8]   Image-based displacement and rotation detection using scale invariant features for 6 degree of freedom ICF target positioning [J].
Feng, Bin ;
Chen, Fengdong ;
Liu, Guodong ;
Xiang, Yong ;
Liu, Bingguo ;
Lv, Zhiwei .
APPLIED OPTICS, 2015, 54 (13) :4130-4134
[9]   DESIGN OF THE NIF CRYOGENIC TARGET SYSTEM [J].
Gibson, C. R. ;
Atkinson, D. P. ;
Baltz, J. A. ;
Brugman, V. P. ;
Coffield, F. E. ;
Edwards, O. D. ;
Haid, B. J. ;
Locke, S. F. ;
Malsbury, T. N. ;
Shiromizu, S. J. ;
Skulina, K. M. .
FUSION SCIENCE AND TECHNOLOGY, 2009, 55 (03) :233-236
[10]   Design and performance of final optics assembly in SG-II Upgrade laser facility [J].
Jiao, Zhaoyang ;
Shao, Ping ;
Zhao, Dongfeng ;
Wu, Rong ;
Ji, Lailin ;
Wang, Li ;
Xia, Lan ;
Liu, Dong ;
Zhou, Yang ;
Ju, Lingjie ;
Cai, Zhijian ;
Ye, Qiang ;
Qiao, Zhanfeng ;
Hua, Neng ;
Li, Qiang ;
Pan, Wei ;
Ren, Lei ;
Sun, Mingying ;
Zhu, Jianqiang ;
Lin, Zunqi .
HIGH POWER LASER SCIENCE AND ENGINEERING, 2018, 6