Control of the LiFePO4 electrochemical properties using low-cost iron precursor in a melt process

被引:22
作者
Talebi-Esfandarani, M. [1 ]
Rousselot, S. [1 ]
Gauthier, M. [1 ]
Sauriol, P. [2 ]
Duttine, M. [3 ]
Wattiaux, A. [3 ]
Liu, Y. [4 ]
Sun, A. X. [4 ]
Liang, G. [5 ]
Dolle, M. [1 ]
机构
[1] Univ Montreal, Dept Chem, Montreal, PQ H3T 1J4, Canada
[2] Ecole Polytech, Dept Chem Engn, Montreal, PQ H3C 3A7, Canada
[3] Univ Bordeaux, CNRS, Inst Chim Mat Condensee Bordeaux, F-33608 Pessac, France
[4] Univ Western Ontario, London, ON N6A 5B8, Canada
[5] Johnson Matthey Battery Mat Ltd, Candiac, PQ J5R 6X1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
LiFePO4; Melt synthesis; Iron ore concentrate; Compositions; Impurities; HYDROTHERMALLY SYNTHESIZED LIFEPO4; POSITIVE-ELECTRODE MATERIALS; CATHODE MATERIAL; LI-ION; LITHIUM; DEFECTS; PERFORMANCE; CHALLENGES; BATTERIES; IMPACT;
D O I
10.1007/s10008-016-3324-2
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
LiFePO4 was prepared from low-cost iron ore concentrate (containing 4.48 wt.% SiO2 and MgO, CaO and Al2O3 below 0.5 wt.% as contaminant) using a melt synthesis. X-ray diffraction (XRD) refinement associated with Mossbauer spectroscopy and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDX) analyses are used to track the location of Si in the material. It is shown that the iron content in the melt can be used as a means to control the doping rate of elements from iron ore concentrate (IOC) precursor according to the formula (Li1 - z A (z) )(Fe1 - y M (y) )(P1 - x Si (x) )O-4. Electrochemical behavior of the material is affected by the doping of LiFePO4. While capacity is decreased in doped material, the cycling stability is much improved. When dopants are out of LiFePO4 structure, capacity retention dramatically drops as well as capacity due to the gravimetric impact of impurity phases. A trade-off between high capacity and best cycling performance is necessary. For instance, slight lack of iron in the melt (6 % deficiency) leads to a capacity only 2 % lower than that of pure Fe2O3-based material for the same stoichiometry and fairly good capacity retention.
引用
收藏
页码:3481 / 3490
页数:10
相关论文
共 45 条
[1]   Lithium extraction/insertion in LiFePO4:: an X-ray diffraction and Mossbauer spectroscopy study [J].
Andersson, AS ;
Kalska, B ;
Häggström, L ;
Thomas, JO .
SOLID STATE IONICS, 2000, 130 (1-2) :41-52
[2]  
[Anonymous], WINNORMOS SOFTWARE
[3]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[4]  
Armand M., 2002, World Patent, Patent No. 0227823
[5]   Nonstoichiometric LiFePO4: Defects and Related Properties [J].
Axmann, P. ;
Stinner, C. ;
Wohlfahrt-Mehrens, M. ;
Mauger, A. ;
Gendron, F. ;
Julien, C. M. .
CHEMISTRY OF MATERIALS, 2009, 21 (08) :1636-1644
[6]   Direct synthesis of nanocrystalline Li0.90FePO4: observation of phase segregation of anti-site defects on delithiation [J].
Badi, Shri-Prakash ;
Wagemaker, Marnix ;
Ellis, Brian L. ;
Singh, Deepak P. ;
Borghols, Wouter J. H. ;
Kan, Wang Hay ;
Ryan, D. H. ;
Mulder, Fokko M. ;
Nazar, Linda F. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (27) :10085-10093
[7]   In Situ Hydrothermal Synthesis of LiFePO4 Studied by Synchrotron X-ray Diffraction [J].
Chen, Jiajun ;
Bai, Jianming ;
Chen, Haiyan ;
Graetz, Jason .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (15) :1874-1878
[8]   Study of LiFePO4 synthesized using a molten method with varying stoichiometries [J].
Daheron, Benjamin ;
MacNeil, Dean D. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2011, 15 (06) :1217-1225
[9]   Optimization of carbon coatings on LiFePO4 [J].
Doeff, Marca M. ;
Wilcox, James D. ;
Kostecki, Robert ;
Lau, Grace .
JOURNAL OF POWER SOURCES, 2006, 163 (01) :180-184
[10]   Effect of surface carbon structure on the electrochemical performance of LiFePO4 [J].
Doeff, MM ;
Hu, YQ ;
McLarnon, F ;
Kostecki, R .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (10) :A207-A209