Capacitance Modeling of Complex Topographical Silicon Quantum Dot Structures

被引:3
作者
Stalford, Harold [1 ]
Young, Ralph W. [2 ]
Nordberg, Eric P. [3 ]
Borras Pinilla, Carlos [4 ,5 ]
Levy, James. E. [2 ]
Carroll, Malcolm S. [2 ]
机构
[1] Univ Oklahoma, Sch Aerosp & Mech Engn, Norman, OK 73019 USA
[2] Sandia Natl Labs, Albuquerque, NM 87185 USA
[3] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
[4] Univ Oklahoma, Norman, OK 73019 USA
[5] Univ Ind Santander, Bucaramanga 678 6344000, Colombia
关键词
FETs; finite-element modeling; quantum capacitance; silicon (Si) nanowire; silicon quantum dots (QDs); ELECTRON; COMPUTATION; TRANSISTOR; SPINS;
D O I
10.1109/TNANO.2010.2087035
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantum dot (QD) layouts are becoming more complex as the technology is being applied to more sophisticated multi-QD structures. This increase in complexity requires improved capacitance modeling both for the design and accurate interpretation of QD properties from measurement. A combination of process simulation, electrostatic simulation, and computer-assisted design (CAD) layout packages are used to develop a 3-D classical capacitance model. The agreement of the classical model's capacitances is tested against two different, experimentally measured, topographically complex silicon QD geometries. Agreement with experiment, within 10%-20%, is demonstrated for the two structures when the details of the structure are transferred from the CAD to the model capturing the full 3-D topography. Small uncertainties in device dimensions due to uncontrolled variation in processing, like layer thickness and gate size, are calculated to be sufficient to explain the disagreement. The sensitivity of the capacitances to small variations in the structure also highlights the limits of accuracy of capacitance models for QD analysis. We furthermore observe that a critical density, the metal-insulator transition, can be used as a good approximation of the metallic edge of the QD when electron density in the dot is calculated directly with a semi-classical simulation.
引用
收藏
页码:855 / 864
页数:10
相关论文
共 21 条
[1]  
Baker R.J., 2019, CMOS: Circuit Design, Layout, and Simulation
[2]   Nanocrystal nonvolatile memory devices [J].
De Blauwe, J .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2002, 1 (01) :72-77
[3]   Single electron tunneling transistor with tunable barriers using silicon nanowire metal-oxide-semiconductor field-effect transistor [J].
Fujiwara, A ;
Inokawa, H ;
Yamazaki, K ;
Namatsu, H ;
Takahashi, Y ;
Zimmerman, NM ;
Martin, SB .
APPLIED PHYSICS LETTERS, 2006, 88 (05) :1-3
[4]   FREQUENCY-LOCKED TURNSTILE DEVICE FOR SINGLE ELECTRONS [J].
GEERLIGS, LJ ;
ANDEREGG, VF ;
HOLWEG, PAM ;
MOOIJ, JE ;
POTHIER, H ;
ESTEVE, D ;
URBINA, C ;
DEVORET, MH .
PHYSICAL REVIEW LETTERS, 1990, 64 (22) :2691-2694
[5]  
Gurrieri Thomas M., 2008, 2008 8th IEEE Conference on Nanotechnology (NANO), P609, DOI 10.1109/NANO.2008.183
[6]   Spins in few-electron quantum dots [J].
Hanson, R. ;
Kouwenhoven, L. P. ;
Petta, J. R. ;
Tarucha, S. ;
Vandersypen, L. M. K. .
REVIEWS OF MODERN PHYSICS, 2007, 79 (04) :1217-1265
[7]   Global control and fast solid-state donor electron spin quantum computing [J].
Hill, CD ;
Hollenberg, LCL ;
Fowler, AG ;
Wellard, CJ ;
Greentree, AD ;
Goan, HS .
PHYSICAL REVIEW B, 2005, 72 (04)
[8]  
Johns D. A., 2008, Analog integrated circuit design
[9]   Quantum computation with quantum dots [J].
Loss, D ;
DiVincenzo, DP .
PHYSICAL REVIEW A, 1998, 57 (01) :120-126
[10]   Demonstration of a silicon-based quantum cellular automata cell [J].
Mitic, M. ;
Cassidy, M. C. ;
Petersson, K. D. ;
Starrett, R. P. ;
Gauja, E. ;
Brenner, R. ;
Clark, R. G. ;
Dzurak, A. S. ;
Yang, C. ;
Jamieson, D. N. .
APPLIED PHYSICS LETTERS, 2006, 89 (01)