The two-body problem with generalized Lennard-Jones potential

被引:14
作者
Barbosu, Mihail [2 ]
Mioc, Vasile [3 ]
Pasca, Daniel [1 ]
Szenkovits, Ferenc [4 ]
机构
[1] Univ Oradea, Dept Math & Informat, Oradea 410087, Romania
[2] SUNY Coll Brockport, Dept Math, Brockport, NY 14420 USA
[3] Acad Romana, Astron Inst, Bucharest 040557, Romania
[4] Univ Babes Bolyai, Dept Appl Math, Cluj Napoca 400084, Romania
关键词
Dynamical systems; Topology; Lennard-Jones model; Motion in a potential field; Global flow;
D O I
10.1007/s10910-011-9867-7
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We consider a generalization of the famous Lennard-Jones potential. To study the two-body problem associated to this potential, we use the foliations of the phase space by the invariant sets corresponding to the first integrals of energy and angular momentum. We investigate all possible situations created by the interplay among the constants of integration and the field parameters. We obtain the global flow, and illustrate it in both 3D and 2D. This flow exhibits a great variety of orbits, a homoclinic one included. All phase portraits are interpreted in terms of physical trajectories.
引用
收藏
页码:1961 / 1975
页数:15
相关论文
共 9 条
[1]  
[Anonymous], 1976, DIFFERENTIAL TOPOLOG
[2]  
DIACU FN, 1995, WORLD SCI SERIES APP, V4, P213
[3]   Cohesion [J].
Lennard-Jones, JE .
PROCEEDINGS OF THE PHYSICAL SOCIETY, 1931, 43 :461-482
[4]   TRIPLE COLLISION IN COLLINEAR 3-BODY PROBLEM [J].
MCGEHEE, R .
INVENTIONES MATHEMATICAE, 1974, 27 (03) :191-227
[5]   On singularities of particle dynamics in quasihomogeneous fields: A first insight [J].
Mioc, V ;
Stavinschi, M .
PHYSICA SCRIPTA, 2002, 65 (03) :193-199
[6]  
Mioc V., 2008, ROM ASTRON J S, V18, P129
[7]  
Mioc V., 2008, ROM ASTRON J, V18, P151
[8]  
Saari D. G., 1974, Celestial Mechanics, V9, P55, DOI 10.1007/BF01236164
[9]   The Schwarzschild problem in astrophysics [J].
Stoica, C ;
Mioc, V .
ASTROPHYSICS AND SPACE SCIENCE, 1997, 249 (01) :161-173