Isomorphism Problem for Almost Simple Linear Groups

被引:0
作者
Shirjian, Farrokh [1 ]
Iranmanesh, Ali [1 ]
Shafiei, Farideh [2 ]
机构
[1] Tarbiat Modares Univ, Fac Math Sci, Dept Pure Math, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
基金
美国国家科学基金会;
关键词
Complex group algebras; character degrees; almost simple groups; POWER DEGREE REPRESENTATIONS; COMPLEX GROUP-ALGEBRAS; DOUBLE COVERS; CHARACTERS;
D O I
10.1007/s00009-022-02172-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to contribute to the Isomorphism Problem of complex group algebras which, informally, asks how much the complex group algebra of a finite group G over C know about the structure of the group. In this paper, we show that finite groups G, where PSLn(q) <= G <= PGL(n)(q), are uniquely determined (up to isomorphism) by the structure of their complex group algebras. This completes the studies initiated by Shirjian and Iranmanesh (Commun Algebra 46(2):552-573, 2018) and extends the main result of Bessenrodt et al. (Algebra Number Theory 9(3):601-628, 2015) to the family of almost simple linear groups of arbitrary large rank.
引用
收藏
页数:20
相关论文
共 32 条
[1]  
[Anonymous], 1892, MONATSH MATH PHYS, DOI DOI 10.1007/BF01692444
[2]   Prime power degree representations of the symmetric and alternating groups [J].
Balog, A ;
Bessenrodt, C ;
Olsson, JB ;
Ono, K .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 :344-356
[3]   Prime power degree representations of the double covers of the symmetric and alternating groups [J].
Bessenrodt, C ;
Olsson, JB .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 :313-324
[4]   Complex group algebras of the double covers of the symmetric and alternating groups [J].
Bessenrodt, Christine ;
Hung Ngoc Nguyen ;
Olsson, Jorn B. ;
Tong-Viet, Hung P. .
ALGEBRA & NUMBER THEORY, 2015, 9 (03) :601-628
[5]   Character degree graphs that are complete graphs [J].
Bianchi, Mariagrazia ;
Chillag, David ;
Lewis, Mark L. ;
Pacifici, Emanuele .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (03) :671-676
[6]  
Brauer B., 1963, LECT MODERN MATH, VI
[7]   The Modular Isomorphism Problem for two generated groups of class two [J].
Broche, Osnel ;
del Rio, Angel .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (03) :721-728
[8]  
Carter R., 1998, FINITE GROUPS LIE TY
[9]  
Curtis R. T., 1985, ATLAS FINITE GROUPS
[10]  
DIGNE F, 1992, J REINE ANGEW MATH, V425, P155