Isomorphism Problem for Almost Simple Linear Groups

被引:0
作者
Shirjian, Farrokh [1 ]
Iranmanesh, Ali [1 ]
Shafiei, Farideh [2 ]
机构
[1] Tarbiat Modares Univ, Fac Math Sci, Dept Pure Math, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
基金
美国国家科学基金会;
关键词
Complex group algebras; character degrees; almost simple groups; POWER DEGREE REPRESENTATIONS; COMPLEX GROUP-ALGEBRAS; DOUBLE COVERS; CHARACTERS;
D O I
10.1007/s00009-022-02172-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to contribute to the Isomorphism Problem of complex group algebras which, informally, asks how much the complex group algebra of a finite group G over C know about the structure of the group. In this paper, we show that finite groups G, where PSLn(q) <= G <= PGL(n)(q), are uniquely determined (up to isomorphism) by the structure of their complex group algebras. This completes the studies initiated by Shirjian and Iranmanesh (Commun Algebra 46(2):552-573, 2018) and extends the main result of Bessenrodt et al. (Algebra Number Theory 9(3):601-628, 2015) to the family of almost simple linear groups of arbitrary large rank.
引用
收藏
页数:20
相关论文
共 32 条
  • [1] Prime power degree representations of the symmetric and alternating groups
    Balog, A
    Bessenrodt, C
    Olsson, JB
    Ono, K
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 : 344 - 356
  • [2] Prime power degree representations of the double covers of the symmetric and alternating groups
    Bessenrodt, C
    Olsson, JB
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 : 313 - 324
  • [3] Complex group algebras of the double covers of the symmetric and alternating groups
    Bessenrodt, Christine
    Hung Ngoc Nguyen
    Olsson, Jorn B.
    Tong-Viet, Hung P.
    [J]. ALGEBRA & NUMBER THEORY, 2015, 9 (03) : 601 - 628
  • [4] Character degree graphs that are complete graphs
    Bianchi, Mariagrazia
    Chillag, David
    Lewis, Mark L.
    Pacifici, Emanuele
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (03) : 671 - 676
  • [5] Brauer B., 1963, LECT MODERN MATH, VI
  • [6] The Modular Isomorphism Problem for two generated groups of class two
    Broche, Osnel
    del Rio, Angel
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (03) : 721 - 728
  • [7] Carter R., 1998, FINITE GROUPS LIE TY
  • [8] Conway J.H., 1985, Atlas of Finite Groups
  • [9] DIGNE F, 1992, J REINE ANGEW MATH, V425, P155
  • [10] DIGNE F., 2020, Representations of finite groups of Lie type, V95