The impact of the catalyst layer structure on phosphoric acid migration in HT-PEFC - An operando X-ray tomographic microscopy study

被引:22
作者
Halter, J. [1 ]
Bevilacqua, N. [2 ]
Zeis, R. [2 ,3 ]
Schmidt, T. J. [1 ,4 ]
Buchi, F. N. [1 ]
机构
[1] Paul Scherrer Inst, Electrochem Lab, CH-5232 Villigen, Switzerland
[2] KIT, HIU, Helmholtzstr 11, D-9081 Ulm, Germany
[3] KIT, Inst Phys Chem, Fritz Haber Weg 2, D-76131 Karlsruhe, Germany
[4] Swiss Fed Inst Technol, Phys Chem Lab, CH-8093 Zurich, Switzerland
关键词
High temperature polymer electrolyte fuel cell; Phosphoric acid; Catalyst layer cracks; X-ray tomographic microscopy; Mitigating electrolyte losses; Lifetime; REDISTRIBUTION; OPERATION;
D O I
10.1016/j.jelechem.2020.113832
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Acid migration and loss at high current densities has previously been identified as an important degradation mechanism for phosphoric acid in high temperature polymer electrolyte fuel cells. In this process, the structure of the anode catalyst layer plays an important role for the acid migration mechanism. Therefore, the acid retaining capabilities of two significantly different catalyst layer structures were investigated by means of operando X-ray tomographic microscopy. In a commercial catalyst layer, with cracks with a mean width of 39 mu m, ideal crack connectivity and no bottlenecks in the crack structure, phosphoric acid penetrates and traverses the catalyst layer and migrates to the GDL and gas channel. In contrast, an in-house catalyst layer retained phosphoric acid within itself. Although with lower mean crack size of only 20 mu m, the different crack connectivity and accessibility, as determined by crack width and simulated mercury intrusion crack size analysis, were identified as main causes for better acid retaining capabilities. A fraction of over 95% of the crack-volume is protected by bottlenecks smaller than 20 mu m. The present analysis is a guideline for engineering acid retaining catalyst layers structures for high temperature polymer electrolyte fuel cells. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 25 条
[1]   Effect of anisotropic thermal conductivity of the GDL and current collector rib width on two-phase transport in a PEM fuel cell [J].
Bapat, Chaitanya J. ;
Thynell, Stefan T. .
JOURNAL OF POWER SOURCES, 2008, 179 (01) :240-251
[2]   Determination of Anion Transference Number and Phosphoric Acid Diffusion Coefficient in High Temperature Polymer Electrolyte Membranes [J].
Becker, Hans ;
Reimer, Uwe ;
Aili, David ;
Cleemann, Lars N. ;
Jensen, Jens Oluf ;
Lehnert, Werner ;
Li, Qingfeng .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (10) :F863-F869
[3]   Probing phosphoric acid redistribution and anion migration in polybenzimidazole membranes [J].
Becker, Hans ;
Cleemann, Lars Nilausen ;
Aili, David ;
Jensen, Jens Oluf ;
Li, Qingfeng .
ELECTROCHEMISTRY COMMUNICATIONS, 2017, 82 :21-24
[4]   Phosphoric Acid Distribution Patterns in High Temperature PEM Fuel Cells [J].
Bevilacqua, N. ;
George, M. G. ;
Bazylak, A. ;
Zeis, R. .
POLYMER ELECTROLYTE FUEL CELLS 17 (PEFC 17), 2017, 80 (08) :409-417
[5]   Role of the microporous layer in the redistribution of phosphoric acid in high temperature PEM fuel cell gas diffusion electrodes [J].
Chevalier, S. ;
Fazeli, M. ;
Mack, F. ;
Galbiati, S. ;
Manke, I. ;
Bazylak, A. ;
Zeis, R. .
ELECTROCHIMICA ACTA, 2016, 212 :187-194
[6]   Raman study of the polybenzimidazole-phosphoric acid interactions in membranes for fuel cells [J].
Conti, Fosca ;
Majerus, Anne ;
Di Noto, Vito ;
Korte, Carsten ;
Lehnert, Werner ;
Stolten, Detlef .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (28) :10022-10026
[7]   Operando X-ray Tomographic Microscopy Imaging of HT-PEFC: A Comparative Study of Phosphoric Acid Electrolyte Migration [J].
Eberhardt, S. H. ;
Marone, F. ;
Stampanoni, M. ;
Buchi, F. N. ;
Schmidt, T. J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (08) :F842-F847
[8]  
Eberhardt S. H., 2015, ECS Transactions, V69, P591, DOI 10.1149/06917.0591ecst
[9]   Correlating Electrolyte Inventory and Lifetime of HT-PEFC by Accelerated Stress Testing [J].
Eberhardt, S. H. ;
Lochner, T. ;
Buechi, F. N. ;
Schmidt, T. J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (12) :F1367-F1372
[10]   Dynamic Operation of HT-PEFC: In-Operando Imaging of Phosphoric Acid Profiles and (Re)distribution [J].
Eberhardt, S. H. ;
Toulec, M. ;
Marone, F. ;
Stampanoni, M. ;
Buechi, F. N. ;
Schmidt, T. J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (03) :F310-F316