Reversible Inhibition of PSD-95 mRNA Translation by miR-125a, FMRP Phosphorylation, and mGIuR Signaling

被引:299
作者
Muddashetty, Ravi S. [1 ]
Nalavadi, Vijayalaxmi C. [1 ]
Gross, Christina [1 ]
Yao, Xiaodi [1 ]
Xing, Lei [1 ]
Laur, Oskar [3 ]
Warren, Stephen T. [4 ,5 ]
Bassell, Gary J. [1 ,2 ]
机构
[1] Emory Univ, Sch Med, Dept Cell Biol, Atlanta, GA 30322 USA
[2] Emory Univ, Sch Med, Dept Neurol, Atlanta, GA 30322 USA
[3] Emory Univ, Sch Med, Dept Microbiol, Atlanta, GA 30322 USA
[4] Emory Univ, Sch Med, Dept Human Genet, Atlanta, GA 30322 USA
[5] Emory Univ, Sch Med, Dept Biochem, Atlanta, GA 30322 USA
基金
美国国家卫生研究院;
关键词
MENTAL-RETARDATION PROTEIN; FRAGILE-X-SYNDROME; RECEPTOR-DEPENDENT TRANSLATION; LONG-TERM POTENTIATION; MOUSE MODEL; POSTSYNAPTIC DENSITIES; HIPPOCAMPAL-NEURONS; AMPA RECEPTOR; MICRORNAS; POLYRIBOSOMES;
D O I
10.1016/j.molcel.2011.05.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The molecular mechanism for how RISC and microRNAs selectively and reversibly regulate mRNA translation in response to receptor signaling is unknown but could provide a means for temporal and spatial control of translation. Here we show that miR-125a targeting PSD-95 mRNA allows reversible inhibition of translation and regulation by gp1 mGluR signaling. Inhibition of miR-125a increased PSD-95 levels in dendrites and altered dendritic spine morphology. Bidirectional control of PSD-95 expression depends on miR-125a and FMRP phosphorylation status. miR-125a levels at synapses and its association with AGO2 are reduced in Fmr1 KO. FMRP phosphorylation promotes the formation of an AGO2-miR-125a inhibitory complex on PSD-95 mRNA, whereas mGIuR signaling of translation requires FMRP dephosphorylation and release of AGO2 from the mRNA. These findings reveal a mechanism whereby FMRP phosphorylation provides a reversible switch for AGO2 and microRNA to selectively regulate mRNA translation at synapses in response to receptor activation.
引用
收藏
页码:673 / 688
页数:16
相关论文
共 53 条
[1]   Heterogeneous dysregulation of microRNAs across the autism spectrum [J].
Abu-Elneel, Kawther ;
Liu, Tsunglin ;
Gazzaniga, Francesca S. ;
Nishimura, Yuhei ;
Wall, Dennis P. ;
Geschwind, Daniel H. ;
Lao, Kaiqin ;
Kosik, Kenneth S. .
NEUROGENETICS, 2008, 9 (03) :153-161
[2]  
[Anonymous], PLOS BIOL
[3]   Metabotropic glutamate receptor-dependent long-term potentiation [J].
Anwyl, R. .
NEUROPHARMACOLOGY, 2009, 56 (04) :735-740
[4]   Loss of the Fragile X Mental Retardation Protein Decouples Metabotropic Glutamate Receptor Dependent Priming of Long-Term Potentiation From Protein Synthesis [J].
Auerbach, Benjamin D. ;
Bear, Mark F. .
JOURNAL OF NEUROPHYSIOLOGY, 2010, 104 (02) :1047-1051
[5]   From mRNP trafficking to spine dysmorphogenesis: The roots of fragile X syndrome [J].
Bagni, C ;
Greenough, WT .
NATURE REVIEWS NEUROSCIENCE, 2005, 6 (05) :376-387
[6]   A Coordinated Local Translational Control Point at the Synapse Involving Relief from Silencing and MOV10 Degradation [J].
Banerjee, Sourav ;
Neveu, Pierre ;
Kosik, Kenneth S. .
NEURON, 2009, 64 (06) :871-884
[7]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[8]   Fragile X Syndrome: Loss of Local mRNA Regulation Alters Synaptic Development and Function [J].
Bassell, Gary J. ;
Warren, Stephen T. .
NEURON, 2008, 60 (02) :201-214
[9]   A critical role for PSD-95/AKAP interactions in endocytosis of synaptic AMPA receptors [J].
Bhattacharyya, Samarjit ;
Biou, Virginie ;
Xu, Weifeng ;
Schlueter, Oliver ;
Malenka, Robert C. .
NATURE NEUROSCIENCE, 2009, 12 (02) :172-181
[10]   Relief of microRNA-mediated translational repression in human cells subjected to stress [J].
Bhattacharyya, Suvendra N. ;
Habermacher, Regula ;
Martine, Ursula ;
Closs, Ellen I. ;
Filipowicz, Witold .
CELL, 2006, 125 (06) :1111-1124