Cauchy-Riemann equations and J-symplectic forms

被引:0
作者
Ferreiro Perez, R. [1 ]
Munoz Masque, J. [2 ]
机构
[1] Univ Complutense Madrid, Dept Econ Financiera & Contabilidad 1, Fac Ciencias Econ & Empresariales, Pozuelo De Alarcon 28223, Spain
[2] CSIC, Inst Fis Aplicada, E-28006 Madrid, Spain
关键词
Cauchy-Riemann forms; Hamiltonian formalism; J-symplectic manifold;
D O I
10.1016/j.difgeo.2007.11.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (Sigma, j) be a Riemann surface. The almost complex manifolds (M, J) for which the J-holomorphic curves phi: Sigma --> M are of variational type, are characterized. This problem is related to the existence of a vertically non-degenerate closed complex 3-form on Sigma x M (see Theorem 4.3 below), which determines a family of J-symplectic structures on (M, J) parametrized by Sigma. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:201 / 207
页数:7
相关论文
共 13 条
[1]  
Anderson I. M., 1992, Contemporary Mathematics, V132, P51, DOI 10.1090/conm/132/1188434
[2]  
Anderson I. M., 1988, ARCH MATH-BRNO, V24, P181
[3]  
Besse A.L., 1987, EINSTEIN MANIFOLDS
[4]   Solution of the inverse problem of the calculus of variations [J].
Douglas, Jesse .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1941, 50 (1-3) :71-128
[5]   Variational character of the Cauchy-Riemann equations [J].
Ferreiro Perez, R. ;
Munoz Masque, J. .
FORUM MATHEMATICUM, 2006, 18 (02) :231-243
[6]  
Grifone J, 2000, VARIATIONAL PRINCIPL
[7]   NECESSARY AND SUFFICIENT CONDITIONS FOR THE EXISTENCE OF A LAGRANGIAN - THE CASE OF QUASILINEAR FIELD-EQUATIONS [J].
KAMO, H ;
SUGANO, R .
ANNALS OF PHYSICS, 1980, 128 (02) :298-313
[8]  
Kobayashi S., 1969, Foundation of differential geometry, VII
[9]  
MCDUFF D, 1994, INTRO SYMPLECTIC TOP
[10]  
McDuff D., 1994, U LECT SER, V6