Let G be a simple undirected graph. For any real number alpha is an element of [0, 1], Nikiforov defined the A(alpha)-matrix of G as A(alpha)(G) = alpha D(G) + (1 - alpha)A(G), where A(G) and D(G) are the adjacency matrix and the degree diagonal matrix of G respectively. The largest eigenvalue of A(alpha)(G) is called the Aa-spectral radius of G. In this paper, we give sharp upper bounds on the Aa-spectral radius of C-4-free graphs and Halin graphs for alpha is an element of [1/2, 1) respectively.
机构:
E China Normal Univ, Dept Math, Shanghai 200241, Peoples R ChinaE China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
Yu, Guanglong
Wu, Yarong
论文数: 0引用数: 0
h-index: 0
机构:
E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
Shanghai Maritime Univ, SMU Coll Art & Sci, Shanghai 200135, Peoples R ChinaE China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
Wu, Yarong
Shu, Jinlong
论文数: 0引用数: 0
h-index: 0
机构:
E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
E China Normal Univ, Key Lab Geog Informat Sci, Minist Educ, Shanghai 200241, Peoples R ChinaE China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
机构:
Korea Adv Inst Sci & Technol, Math Sci Dept, Daejeon, South KoreaKorea Adv Inst Sci & Technol, Math Sci Dept, Daejeon, South Korea
Kim, Jaehoon
Kostochka, Alexandr, V
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Math, Urbana, IL 61801 USA
Sobolev Inst Math, Novosibirsk 630090, RussiaKorea Adv Inst Sci & Technol, Math Sci Dept, Daejeon, South Korea
Kostochka, Alexandr, V
Suil, O.
论文数: 0引用数: 0
h-index: 0
机构:
State Univ New York, Dept Appl Math & Stat, Incheon 21985, South KoreaKorea Adv Inst Sci & Technol, Math Sci Dept, Daejeon, South Korea
Suil, O.
Shi, Yongtang
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaKorea Adv Inst Sci & Technol, Math Sci Dept, Daejeon, South Korea
Shi, Yongtang
Wang, Zhiwen
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, LPMC, Tianjin 300071, Peoples R China
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R ChinaKorea Adv Inst Sci & Technol, Math Sci Dept, Daejeon, South Korea