Bound state solutions for Kirchhoff type equations in dimension two

被引:2
作者
Zhang, Jian [1 ]
Liu, Huize [1 ]
Bao, Xue [1 ]
机构
[1] China Univ Petr, Coll Sci, Qingdao 266580, Shandong, Peoples R China
关键词
Kirchhoff type equation; Bound states; Dimension two; Variational method; NONLINEAR SCHRODINGER-EQUATION; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; GROUND-STATES; EXISTENCE;
D O I
10.1016/j.jmaa.2021.125796
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following Kirchhoff type equation: -M (integral(R2) vertical bar del u vertical bar(2)dx) Delta u + u = a(x) f(u) in R-2, where M is a general function with inf(R+) M > 0 and f is a superlinear subcritical term. We obtain bound state solutions by developing some techniques in variational methods. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:18
相关论文
共 27 条
[1]   Bending and stretching energies in a rectangular plate modeling suspension bridges [J].
Al-Gwaiz, Mohammed ;
Benci, Vieri ;
Gazzola, Filippo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 106 :18-34
[2]   A note on the elliptic Kirchhoff equation in RN perturbed by a local nonlinearity [J].
Azzoilini, A. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2015, 17 (04)
[3]   On the existence of a positive solution of semilinear elliptic equations in unbounded domains [J].
Bahri, A ;
Lions, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (03) :365-413
[4]   EXISTENCE OF POSITIVE SOLUTIONS OF THE EQUATION -DELTA-U+A(X)U=U(N+2)/(N-2) IN RN [J].
BENCI, V ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (01) :90-117
[5]   The effect of concentrating potentials in some singularly perturbed problems [J].
Cerami, G ;
Passaseo, D .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 17 (03) :257-281
[6]   Positive bound state solutions for some Schrodinger-Poisson systems [J].
Cerami, Giovanna ;
Molle, Riccardo .
NONLINEARITY, 2016, 29 (10) :3103-3119
[7]   Positive solutions for some non-autonomous Schrodinger-Poisson systems [J].
Cerami, Giovanna ;
Vaira, Giusi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (03) :521-543
[8]   Ground state solutions for Kirchhoff-type equations with general nonlinearity in low dimension [J].
Chen, Jing ;
Li, Yiqing .
BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
[9]   On the planar Schrodinger-Poisson system [J].
Cingolani, Silvia ;
Weth, Tobias .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (01) :169-197
[10]   ELLIPTIC-EQUATIONS IN R(2) WITH NONLINEARITIES IN THE CRITICAL GROWTH RANGE [J].
DEFIGUEIREDO, DG ;
MIYAGAKI, OH ;
RUF, B .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1995, 3 (02) :139-153