Effect of petrophysical matrix properties on bypassed oil recovery from a matrix-fracture system during CO2 near-miscible injection: Experimental investigation

被引:10
作者
Bejestani, Danial Zeinabady [1 ]
Rostami, Behzad [1 ]
Khosravi, Maryam [2 ]
Kazemi, Keyvan [1 ]
机构
[1] Univ Tehran, Inst Petr Engn, Sch Chem Engn, Coll Engn, Tehran, Iran
[2] Natl Iranian Oil Co, IOR Res Inst, Tehran, Iran
关键词
Near-miscible injection; Bypassed oil; Matrix-fracture system; Near-critical-point-wetting; CO2; injection; GAS; VISUALIZATION; MECHANISMS;
D O I
10.1016/j.ijmultiphaseflow.2016.06.011
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The effects of petrophysical matrix properties such as porosity and permeability on bypassed oil recovery were investigated during CO2 injection in fractures at different miscibility regimes (first-contact miscibility, near-miscibility, and immiscibility). A special experimental setup was designed for this purpose and a series of CO2 injection experiments were performed using two different types of porous media, sandstones and carbonates. To confirm the analysis, some tests were repeated in the presence of irreducible water saturation. In addition, dimensional analysis was used to capture the dominant forces and mechanisms. The results demonstrated that the highest oil recovery was achieved within near-miscible regime for the both rock types. Furthermore, in all miscibility regimes, the oil recovery factor decreased with the increase of the rock complexity and frequency of dead-end pores, whereas it declined as the permeability decreased. However, differences in recovery factors of near-critical and super-critical tests grew. Considering the analytical calculations and the results of experiments including initial water saturation, it can be concluded that near-critical point wetting and the number of dead-end pores have significant effects on variations of the oil recovery factor. With near-critical point wetting, maximum recovery was achieved at near-critical state, and the presence of dead-end pores caused the role of this mechanism to be more noticeable. As a result, differences in the recovery factor of near-critical and super-critical tests grew. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:123 / 131
页数:9
相关论文
共 27 条
[1]  
[Anonymous], 20177225 SPE
[2]   Experiments on bypassing during gasfloods in heterogeneous porous media [J].
Burger, JE ;
Springate, GS ;
Mohanty, KK .
SPE RESERVOIR ENGINEERING, 1996, 11 (02) :109-115
[3]   EFFECT OF PHASE-BEHAVIOR ON BYPASSING IN ENRICHED GASFLOODS [J].
BURGER, JE ;
BHOGESWARA, R ;
MOHANTY, KK .
SPE RESERVOIR ENGINEERING, 1994, 9 (02) :112-118
[4]   CRITICAL-POINT WETTING [J].
CAHN, JW .
JOURNAL OF CHEMICAL PHYSICS, 1977, 66 (08) :3667-3672
[5]   FLOW VISUALIZATION FOR CO2/CRUDE-OIL DISPLACEMENTS [J].
CAMPBELL, BT ;
ORR, FM .
SOCIETY OF PETROLEUM ENGINEERS JOURNAL, 1985, 25 (05) :665-678
[6]  
Chilingarian G., 1991, Empirical Expression of Permeability in Terms of Other Petrophysical Properties, P49, DOI [10.1007/978-1-4899-0617-5-5, DOI 10.1007/978-1-4899-0617-5-5]
[7]   Phase Equilibria of CO2+n-Alkane Binary Systems in Wide Ranges of Conditions: Development of Predictive Correlations Based on Cubic Mixing Rules [J].
Cismondi, Martin ;
Rodriguez-Reartes, Sabrina B. ;
Milanesio, Juan M. ;
Zabaloy, Marcelo S. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (17) :6232-6250
[8]  
Coats K.H., 1963, T AIME, V231, P73
[9]  
Fatt I., 1966, 1441 SPE
[10]  
Fayers F., 1992, SOC PET ENG, DOI [10.2118/24934-MS, DOI 10.2118/24934-MS]