Uniqueness theorems for the Dirac operator with eigenparameter boundary conditions and transmission conditions

被引:5
|
作者
Guo, Yongxia [1 ,2 ]
Wei, Guangsheng [2 ]
Yao, Ruoxia [1 ]
机构
[1] Shaanxi Normal Univ, Sch Comp Sci, Xian, Peoples R China
[2] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Dirac operator; eigenparameter-dependent boundary conditions; transmission conditions; uniqueness theorem; INVERSE SPECTRAL PROBLEMS; EIGENVALUE PARAMETER; EQUATIONS; SYSTEM;
D O I
10.1080/00036811.2018.1540039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inverse spectral problems are considered for the Dirac operator with boundary conditions depending polynomially on the spectral parameter and with a finite number of transmission conditions. We investigate two inverse problems of recovering the operator either from the so-called Weyl function or from two spectra. Furthermore, we also extend Hochstadt-Lieberman theorem to our cases.
引用
收藏
页码:1564 / 1578
页数:15
相关论文
共 50 条