Sustainability Evaluation of Biodiesel from Arthrospira platensis and Chlorella vulgaris under Mixotrophic Conditions and Salinity Stress

被引:14
|
作者
Martins, Antonio A. [1 ,2 ]
Mata, Teresa M. [1 ]
Oliveira, Octavio [3 ]
Oliveira, Sandra [3 ]
Mendes, Adelio M. [1 ]
Caetano, Nidia S. [1 ,3 ]
机构
[1] Univ Porto FEUP, Fac Engn, LEPABE Lab Proc Engn Environm Biotechnol & Energy, R Dr Roberto Frias S-N, P-4200465 Oporto, Portugal
[2] Oporto Lusophone Univ, Fac Nat Sci Engn & Technol FCNET, Dept Environm Engn, R Dr Augusto Rosa 24, P-4000098 Oporto, Portugal
[3] Polytech Inst Porto IPP, Sch Engn ISEP, Dept Chem Engn, CIETI, R Dr Antonio Bernardino de Almeida S-N, P-4200072 Oporto, Portugal
来源
5TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL BIOTECHNOLOGY (IBIC 2016) | 2016年 / 49卷
关键词
MICROALGAE; BIOFUELS; OIL;
D O I
10.3303/CET1649096
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
This study performs a sustainability evaluation of biodiesel production from microalgae Arthrospira platensis (A. platensis) and Chlorella vulgaris (C. vulgaris) cultivated in mixotrophic conditions, with and without salinity stress, in comparison to autotrophic conditions. The life cycle steps considered for the evaluation are microalgae cultivation, biomass harvesting, lipids extraction, biodiesel production, distribution and use. Three sustainability indicators (LCEE - Life Cycle Energy Efficiency, FER - Fossil Energy Ratio and GW - Global Warming) are calculated based on laboratory experiments conducted in this study and literature data to complement inventory data, thus allowing a more truthful and accurate sustainability evaluation. Results show that in the current conditions, production of biodiesel from these microalgae is not energy efficient, since LCEE and FER values are lower than one, except for C. Vulgaris at mixotrophic growth, without salinity stress. GW values are always positive, meaning that carbon captured during microalgae growth does not compensate the carbon emitted in the whole process. A comparative analysis of the various process steps is also conducted, showing that the water removal and lipids recovery are critical steps for the process sustainability. One possible solution is to explore these microalgae in a biorefinery process, where the desired product is obtained along with a host of by-products, increasing the process sustainability and competitiveness.
引用
收藏
页码:571 / 576
页数:6
相关论文
共 50 条
  • [21] Guidance for formulating ingredients/products from Chlorella vulgaris and Arthrospira platensis considering carotenoid and chlorophyll bioaccessibility and cellular uptake
    Nass, Pricila P.
    do Nascimento, Tatiele C.
    Fernandes, Andrêssa S.
    Caetano, Patrícia A.
    de Rosso, Veridiana V.
    Jacob-Lopes, Eduardo
    Zepka, Leila Q.
    Food Research International, 2022, 157
  • [22] Guidance for formulating ingredients/products from Chlorella vulgaris and Arthrospira platensis considering carotenoid and chlorophyll bioaccessibility and cellular uptake
    Nass, Pricila P.
    do Nascimento, Tatiele C.
    Fernandes, Andressa S.
    Caetano, Patricia A.
    de Rosso, Veridiana V.
    Jacob-Lopes, Eduardo
    Zepka, Leila Q.
    FOOD RESEARCH INTERNATIONAL, 2022, 157
  • [23] GROWTH PARAMETERS, PROTEIN AND PHOTOSYNTHETIC PIGMENT CONTENT OF CHLORELLA VULGARIS CULTIVATED UNDER PHOTOAUTOTROPHIC AND MIXOTROPHIC CONDITIONS
    Velichkova, Katya
    Sirakov, Ivaylo
    BULGARIAN JOURNAL OF AGRICULTURAL SCIENCE, 2018, 24 : 150 - 155
  • [24] Effect of the foliar application of cyanobacterial hydrolysate (Arthrospira platensis) on the growth of Petunia x hybrida under salinity conditions
    P. J. Bayona-Morcillo
    B. M. Plaza
    C. Gómez-Serrano
    E. Rojas
    S. Jiménez-Becker
    Journal of Applied Phycology, 2020, 32 : 4003 - 4011
  • [25] Efficient utilization of monosaccharides from agri-food byproducts supports Chlorella vulgaris biomass production under mixotrophic conditions
    Angelini, Francesca
    Bellini, Erika
    Marchetti, Angela
    Salvatori, Gaia
    Villano, Marianna
    Pontiggia, Daniela
    Ferrari, Simone
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2024, 77
  • [26] Response of Spirulina platensis (=Arthrospira fusiformis) from Lake Chitu, Ethiopia, to salinity stress from sodium salts
    Kebede E.
    Journal of Applied Phycology, 1997, 9 (6) : 551 - 558
  • [27] Response of Spirulina platensis (=Arthrospira fusiformis) from Lake Chitu, Ethiopia, to salinity stress from sodium salts
    Kebede, E
    JOURNAL OF APPLIED PHYCOLOGY, 1997, 9 (06) : 551 - 558
  • [28] Exploration of using stripped ammonia and ash from poultry litter for the cultivation of the cyanobacterium Arthrospira platensis and the green microalga Chlorella vulgaris
    Markou, Giorgos
    Iconomou, Dimitris
    Sotiroudis, Theodore
    Israilides, Cleanthes
    Muylaert, Koenraad
    BIORESOURCE TECHNOLOGY, 2015, 196 : 459 - 468
  • [29] In situ biodiesel production from wet Chlorella vulgaris under subcritical condition
    Tsigie, Yeshitila Asteraye
    Lien Huong Huynh
    Ismadji, Suryadi
    Engida, Adam Mekonnen
    Ju, Yi-Hsu
    CHEMICAL ENGINEERING JOURNAL, 2012, 213 : 104 - 108
  • [30] Pyrolysis-GCMS of Spirulina platensis: Evaluation of biomasses cultivated under autotrophic and mixotrophic conditions
    Paula, Sueilha F. A.
    Chagas, Bruna M. E.
    Pereira, Maria I. B.
    Rangel, Adriano H. N.
    Sassi, Cristiane F. C.
    Borba, Luiz H. F.
    Santos, Everaldo S.
    Asevedo, Estefani A.
    Camara, Fabiana R. A.
    Araujo, Renata M.
    PLOS ONE, 2022, 17 (10):