In Situ and Operando Investigations of Failure Mechanisms of the Solid Electrolyte Interphase on Silicon Electrodes

被引:140
作者
Kumar, Ravi [1 ]
Tokranov, Anton [1 ]
Sheldon, Brian W. [1 ]
Xiao, Xingcheng [2 ]
Huang, Zhuangqun [3 ]
Li, Chunzeng [3 ]
Mueller, Thomas [3 ]
机构
[1] Brown Univ, Sch Engn, 182 Hope St,Box D, Providence, RI 02912 USA
[2] Gen Motors Global R&D Ctr, 30500 Mound Rd, Warren, MI 48090 USA
[3] Bruker Nano Surfaces, 112 Robin Hill Rd, Goleta, CA 93117 USA
关键词
LITHIUM-ION BATTERIES; ATOMIC-FORCE MICROSCOPY; COMPOSITE GRAPHITE-ELECTRODES; THIN-FILM ELECTRODES; SEI FORMATION; X-RAY; LI; ANODES; LITHIATION; EVOLUTION;
D O I
10.1021/acsenergylett.6b00284
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The lifetime of rechargeable lithium ion batteries is closely related to the formation and evolution of the solid electrolyte interphase (SEI). These passivation films undergo substantial deformations when the underlying electrode particles expand and contract during cycling. Directly probing these changes is extremely challenging. In this study, we demonstrate a new approach for applying controlled strains to SEI films with patterned Si electrodes, in conjunction with direct observations of mechanical degradation using in operando atomic force microscopy. Monitoring both strain and crack formation in SEI provides new in-depth understanding of SEI fracture. These results verify that crack formation occurs during lithiation (this has been predicted previously but not directly observed). Additional SEI formation at low potentials did not fill these cracks, which directly contradicts prior speculation. These experiments also made it possible to estimate the fracture toughness of the SEI (a key value that has not been previously measured).
引用
收藏
页码:689 / 697
页数:9
相关论文
共 46 条
[1]   Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :206-218
[2]   In situ AFM imaging of surface phenomena on composite graphite electrodes during lithium insertion [J].
Aurbach, D ;
Koltypin, M ;
Teller, H .
LANGMUIR, 2002, 18 (23) :9000-9009
[3]   Reaction of Li with alloy thin films studied by in situ AFM [J].
Beaulieu, LY ;
Hatchard, TD ;
Bonakdarpour, A ;
Fleischauer, MD ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (11) :A1457-A1464
[4]   In Situ Atomic Force Microscopy of Lithiation and Delithiation of Silicon Nanostructures for Lithium Ion Batteries [J].
Becker, Collin R. ;
Strawhecker, Kenneth E. ;
McAllister, Quinn P. ;
Lundgren, Cynthia A. .
ACS NANO, 2013, 7 (10) :9173-9182
[5]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[6]   In Situ X-ray Study of the Solid Electrolyte Interphase (SEI) Formation on Graphene as a Model Li-ion Battery Anode [J].
Chattopadhyay, Sudeshna ;
Lipson, Albert L. ;
Karmel, Hunter J. ;
Emery, Jonathan D. ;
Fister, Timothy T. ;
Fenter, Paul A. ;
Hersam, Mark C. ;
Bedzyk, Michael J. .
CHEMISTRY OF MATERIALS, 2012, 24 (15) :3038-3043
[7]   Diffusion-Induced Stress, Interfacial Charge Transfer, and Criteria for Avoiding Crack Initiation of Electrode Particles [J].
Cheng, Yang-Tse ;
Verbrugge, Mark W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (04) :A508-A516
[8]   Battery Cycle Life Prediction with Coupled Chemical Degradation and Fatigue Mechanics [J].
Deshpande, Rutooj ;
Verbrugge, Mark ;
Cheng, Yang-Tse ;
Wang, John ;
Liu, Ping .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (10) :A1730-A1738
[9]  
Freund L. B., 2004, Thin Film Materials Stress, Defect Formation and Surface Evolution
[10]   Modified Stoney Equation for Patterned Thin Film Electrodes on Substrates in the Presence of Interfacial Sliding [J].
Haftbaradaran, Hamed ;
Soni, Sumit K. ;
Sheldon, Brian W. ;
Xiao, Xingcheng ;
Gao, Huajian .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2012, 79 (03)