Deep semantic segmentation of natural and medical images: a review

被引:516
作者
Asgari Taghanaki, Saeid [1 ]
Abhishek, Kumar [1 ]
Cohen, Joseph Paul [2 ]
Cohen-Adad, Julien [3 ]
Hamarneh, Ghassan [1 ]
机构
[1] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC, Canada
[2] Univ Montreal, Mila, Montreal, PQ, Canada
[3] Polytech Montreal, NeuroPoly Lab, Inst Biomed Engn, Montreal, PQ, Canada
关键词
Semantic image segmentation; Deep learning; OBJECT DETECTION; NEURAL-NETWORKS; U-NET; DATABASE; SEARCH; VIDEO;
D O I
10.1007/s10462-020-09854-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The semantic image segmentation task consists of classifying each pixel of an image into an instance, where each instance corresponds to a class. This task is a part of the concept of scene understanding or better explaining the global context of an image. In the medical image analysis domain, image segmentation can be used for image-guided interventions, radiotherapy, or improved radiological diagnostics. In this review, we categorize the leading deep learning-based medical and non-medical image segmentation solutions into six main groups of deep architectural, data synthesis-based, loss function-based, sequenced models, weakly supervised, and multi-task methods and provide a comprehensive review of the contributions in each of these groups. Further, for each group, we analyze each variant of these groups and discuss the limitations of the current approaches and present potential future research directions for semantic image segmentation.
引用
收藏
页码:137 / 178
页数:42
相关论文
共 50 条
  • [31] FOREST SEMANTIC SEGMENTATION BASED ON DEEP LEARNING USING SENTINEL-2 IMAGES
    Hizal, C.
    Gulsu, G.
    Akgun, H. Y.
    Kulavuz, B.
    Bakirman, T.
    Aydin, A.
    Bayram, B.
    8TH INTERNATIONAL CONFERENCE ON GEOINFORMATION ADVANCES, GEOADVANCES 2024, VOL. 48-4, 2024, : 229 - 236
  • [32] Interactive segmentation of medical images using deep learning
    Zhao, Xiaoran
    Pan, Haixia
    Bai, Wenpei
    Li, Bin
    Wang, Hongqiang
    Zhang, Meng
    Li, Yanan
    Zhang, Dongdong
    Geng, Haotian
    Chen, Minghuang
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (04)
  • [33] Review of Image Semantic Segmentation Based on Deep Learning
    Tian X.
    Wang L.
    Ding Q.
    Ruan Jian Xue Bao/Journal of Software, 2019, 30 (02): : 440 - 468
  • [34] A review of semantic segmentation using deep neural networks
    Guo, Yanming
    Liu, Yu
    Georgiou, Theodoros
    Lew, Michael S.
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2018, 7 (02) : 87 - 93
  • [35] Review of Deep Learning-Based Semantic Segmentation
    Zhang Xiangfu
    Jian, Liu
    Shi Zhangsong
    Wu Zhonghong
    Zhi, Wang
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (15)
  • [36] Review of Semantic Segmentation by Using Deep learning methods
    Rajeswari, B.
    Ram, J. Mani
    Kumar, D. V. T. Praveen
    Harshith, K. L. V. V.
    2024 INTERNATIONAL CONFERENCE ON SOCIAL AND SUSTAINABLE INNOVATIONS IN TECHNOLOGY AND ENGINEERING, SASI-ITE 2024, 2024, : 272 - 277
  • [37] A review of semantic segmentation using deep neural networks
    Yanming Guo
    Yu Liu
    Theodoros Georgiou
    Michael S. Lew
    International Journal of Multimedia Information Retrieval, 2018, 7 : 87 - 93
  • [38] Research Contribution and Comprehensive Review towards the Semantic Segmentation of Aerial Images Using Deep Learning Techniques
    Anilkumar, P.
    Venugopal, P.
    SECURITY AND COMMUNICATION NETWORKS, 2022, 2022
  • [39] A review of the application of deep learning in medical image classification and segmentation
    Cai, Lei
    Gao, Jingyang
    Zhao, Di
    ANNALS OF TRANSLATIONAL MEDICINE, 2020, 8 (11)
  • [40] Deep Learning for Semantic Segmentation of Defects in Advanced STEM Images of Steels
    Roberts, Graham
    Haile, Simon Y.
    Sainju, Rajat
    Edwards, Danny J.
    Hutchinson, Brian
    Zhu, Yuanyuan
    SCIENTIFIC REPORTS, 2019, 9 (1)