EIGENVALUES OF LAPLACIANS ON HIGHER DIMENSIONAL VICSEK SET GRAPHS

被引:0
作者
Cao, Shiping [1 ]
Strichartz, Robert S. [1 ]
Wei, Melissa [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
关键词
Vicsek Set; Eigenvalues; Isomorphism of Lattices; SPECTRAL-ANALYSIS; SIERPINSKI; EIGENFUNCTIONS; FRACTALS; GAPS;
D O I
10.1142/S0218348X22500190
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the graphs associated with Vicsek sets in higher dimensional settings. First, we study the eigenvalues of the Laplacians on the approximating graphs of the Vicsek sets, finding a general spectral decimation function. This is an extension of earlier results on two-dimensional Vicsek sets. Second, we study the Vicsek set lattices, which are natural analogues to the Sierpinski lattices. We have a criterion when two different Vicsek set lattices are isomorphic.
引用
收藏
页数:13
相关论文
共 31 条
[1]  
[Anonymous], 1996, Japan J. Indust. Appl. Math.
[2]  
[Anonymous], 1992, Potential Anal., DOI DOI 10.1007/BF00249784
[3]  
[Anonymous], 1998, Diffusion on Fractals, DOI DOI 10.1007/BFB0092537
[4]   Vibration spectra of finitely ramified, symmetric fractals [J].
Bajorin, N. ;
Chen, T. ;
Dagan, A. ;
Emmons, C. ;
Hussein, M. ;
Khalil, M. ;
Mody, P. ;
Steinhurst, B. ;
Teplyaev, A. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2008, 16 (03) :243-258
[5]   Vibration modes of 3n-gaskets and other fractals [J].
Bajorin, N. ;
Chen, T. ;
Dagan, A. ;
Emmons, C. ;
Hussein, M. ;
Khalil, M. ;
Mody, P. ;
Steinhurst, B. ;
Teplyaev, A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (01)
[6]   Localized eigenfunctions of the Laplacian on pcf self-similar sets [J].
Barlow, MT ;
Kigami, J .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1997, 56 :320-332
[7]   BROWNIAN-MOTION ON THE SIERPINSKI GASKET [J].
BARLOW, MT ;
PERKINS, EA .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (04) :543-623
[8]   Partial differential equations on products of Sierpinski gaskets [J].
Bockelman, Brian ;
Strichartz, Robert S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (03) :1361-1375
[9]   Singularly continuous spectrum of a self-similar Laplacian on the half-line [J].
Chen, Joe P. ;
Teplyaev, Alexander .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (05)
[10]  
Degrado JL, 2009, P AM MATH SOC, V137, P531