Polynomial graph invariants and the KP hierarchy

被引:6
作者
Chmutov, Sergei [1 ]
Kazarian, Maxim [2 ]
Lando, Sergei [2 ]
机构
[1] Ohio State Univ, Mansfield, OH 44906 USA
[2] Natl Res Univ Higher Sch Econ, Skolkovo Inst Sci & Technol, Moscow, Russia
来源
SELECTA MATHEMATICA-NEW SERIES | 2020年 / 26卷 / 03期
基金
俄罗斯科学基金会;
关键词
HOPF ALGEBRA;
D O I
10.1007/s00029-020-00562-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the generating function for the symmetric chromatic polynomial of all simple graphs is (after an appropriate scaling change of variables) a linear combination of one-part Schur polynomials. This statement immediately implies that it is also a tau-function of the Kadomtsev-Petviashvili integrable hierarchy of mathematical physics. Moreover, we describe a large family of polynomial graph invariants leading to the same tau-function. In particular, we introduce the Abel polynomial for graphs and show this for its generating function. The key point here is a Hopf algebra structure on the space spanned by graphs and the behavior of the invariants on its primitive space.
引用
收藏
页数:22
相关论文
共 23 条
[1]  
Abel N. H., 1826, J. fur die reine und angewandte Mathematik, V1, P159
[2]   Combinatorial Hopf algebras and generalized Dehn-Sommerville relations [J].
Aguiar, M ;
Bergeron, N ;
Sottile, F .
COMPOSITIO MATHEMATICA, 2006, 142 (01) :1-30
[3]  
Billey S.C., 2016, The Mathematical Legacy of Richard P. Stanley, P83
[4]  
Chebotarev P., ARXIVMATH0602575MATH
[5]  
Chmutov S.V., 1994, Adv. Sov. Math., V21, P135
[6]   The KP hierarchy, branched covers, and triangulations [J].
Goulden, I. P. ;
Jackson, D. M. .
ADVANCES IN MATHEMATICS, 2008, 219 (03) :932-951
[7]  
JONI SA, 1979, STUD APPL MATH, V61, P93
[8]  
Kadomtsev B. B., 1970, Soviet Physics - Doklady, V15, P539
[9]   Combinatorial solutions to integrable hierarchies [J].
Kazarian, M. E. ;
Lando, S. K. .
RUSSIAN MATHEMATICAL SURVEYS, 2015, 70 (03) :453-482
[10]  
Kelmans A. K., 1974, Journal of Combinatorial Theory, Series B, V16, P197, DOI 10.1016/0095-8956(74)90065-3