Derivations, automorphisms, and representations of complex -Lie algebras

被引:9
作者
Chen, Yin [1 ]
Zhang, Ziping [1 ]
Zhang, Runxuan [1 ]
Zhuang, Rushu [1 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
关键词
omega-Lie algebras; automorphisms; derivations; irreducible representations;
D O I
10.1080/00927872.2017.1327062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (?,) be a finite-dimensional non-Lie complex -Lie algebra. We study the derivation algebra Der(?) and the automorphism group Aut(?) of (?,). We introduce the notions of -derivations and -automorphisms of (?,) which naturally preserve the bilinear form . We show that the set Der(?) of all -derivations is a Lie subalgebra of Der(?) and the set Aut(?) of all -automorphisms is a subgroup of Aut(?). For any three-dimensional and four-dimensional nontrivial -Lie algebra ?, we compute Der(?) and Aut(?) explicitly, and study some Lie group properties of Aut(?). We also study representation theory of -Lie algebras. We show that all three-dimensional nontrivial -Lie algebras are multiplicative, as well as we provide a four-dimensional example of -Lie algebra that is not multiplicative. Finally, we show that any irreducible representation of the simple -Lie algebra C(0,-1) is one-dimensional.
引用
收藏
页码:708 / 726
页数:19
相关论文
共 13 条
  • [1] [Anonymous], 1979, LIE ALGEBRAS
  • [2] Irreducible SO(3) geometry in dimension five
    Bobienski, Marcin
    Nurowski, Pawel
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 605 : 51 - 93
  • [3] Chen Y, 2017, B MALAYS MATH SCI SO, V40, P1377, DOI 10.1007/s40840-015-0120-6
  • [4] Classification of three-dimensional complex ω-Lie algebras
    Chen, Yin
    Liu, Chang
    Zhang, Runxuan
    [J]. PORTUGALIAE MATHEMATICA, 2014, 71 (02) : 97 - 108
  • [5] Fulton W., 1991, REPRESENTATION THEOR, V129
  • [6] Hall B., 2000, LIE GROUPS LIE ALGEB, V222
  • [7] Hom-Lie algebra structures on semi-simple Lie algebras
    Jin, Quanqin
    Li, Xiaochao
    [J]. JOURNAL OF ALGEBRA, 2008, 319 (04) : 1398 - 1408
  • [8] Distinguished dimensions for special Riemannian geometries
    Nurowski, Pawel
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (09) : 1148 - 1170
  • [9] Deforming a Lie algebra by means of a 2-form
    Nurowski, Pawel
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (05) : 1325 - 1329
  • [10] SAGLE AA, 1973, INTRO LIE GROUPS LIE