Proteomic analysis of oxidative stress-resistant cells - A specific role for aldose reductase overexpression in cytoprotection

被引:54
作者
Keightley, JA
Shang, L
Kinter, M
机构
[1] Cleveland Clin Fdn, Dept Cell Biol, Lerner Res Inst, Cleveland, OH 44195 USA
[2] Case Western Reserve Univ, Sch Med, Dept Physiol & Biophys, Cleveland, OH 44106 USA
[3] Cleveland State Univ, Dept Chem, Cleveland, OH 44115 USA
关键词
D O I
10.1074/mcp.M300119-MCP200
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We are using a proteomic approach that combines two-dimensional electrophoresis and tandem mass spectrometry to detect and identify proteins that are differentially expressed in a cell line that is resistant to oxidative stress. The resistant cell line (OC14 cells) was developed previously through chronic exposure of a parent cell line (HA1 cells) to increasing hydrogen peroxide concentrations. Biochemical analyses of this system by other investigators have identified elevated content and activity of several classical antioxidant proteins that have established roles in oxidative stress resistance, but do not provide a complete explanation of this resistance. The proteomics studies described here have identified the enzyme aldose reductase (AR) as 4-fold more abundant in the resistant OC14 cells than in the HA1 controls. Based on this observation, the role of AR in the resistant phenotype was investigated by using a combination of AR induction with ethoxyquin and AR inhibition with Alrestatin to test the cytotoxicity of two oxidation-derived aldehydes: acrolein and glycolaldehyde. The results show that AR induction in HA1 cells provides protection against both acrolein- and glycolaldehyde-induced cytotoxicity. Furthermore, glutathione depletion sensitizes the cells to the acrolein-induced toxicity, but not the glycolaldehyde-induced toxicity, while AR inhibition sensitizes the cells to both acrolein- and glycolaldehyde-induced. These observations are consistent with a significant role for AR in the oxidative stress-resistant phenotype. These studies also illustrate the productive use of proteomic methods to investigate the molecular mechanisms of oxidative stress.
引用
收藏
页码:167 / 175
页数:9
相关论文
共 46 条
[1]   Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein - A mechanism for the generation of highly reactive alpha-hydroxy and alpha,beta-unsaturated aldehydes by phagocytes at sites of inflammation [J].
Anderson, MM ;
Hazen, SL ;
Hsu, FF ;
Heinecke, JW .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 99 (03) :424-432
[2]   Phagocytes and oxidative stress [J].
Babior, BM .
AMERICAN JOURNAL OF MEDICINE, 2000, 109 (01) :33-44
[3]   Adenovirus-mediated overexpression of catalase in the cytosolic or mitochondrial compartment protects against cytochrome P450 2E1-dependent toxicity in HepG2 cells [J].
Bai, JX ;
Cederbaum, AI .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (06) :4315-4321
[4]   The C-terminal loop of aldehyde reductase determines the substrate and inhibitor specificity [J].
Barski, OA ;
Gabbay, KH ;
Bohren, KM .
BIOCHEMISTRY, 1996, 35 (45) :14276-14280
[5]  
Bostwick DG, 2000, CANCER, V89, P123, DOI 10.1002/1097-0142(20000701)89:1<123::AID-CNCR17>3.0.CO
[6]  
2-9
[7]   The oxidative modification hypothesis of atherogenesis: An overview [J].
Chisolm, GM ;
Steinberg, D .
FREE RADICAL BIOLOGY AND MEDICINE, 2000, 28 (12) :1815-1826
[8]   Kinetic and structural characterization of the glutathione-binding site of aldose reductase [J].
Dixit, BL ;
Balendiran, GK ;
Watowich, SJ ;
Srivastava, S ;
Ramana, KV ;
Petrash, JM ;
Bhatnagar, A ;
Srivastava, SK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (28) :21587-21595
[9]   MECHANISM OF ALDOSE REDUCTASE INHIBITION - BINDING OF NADP+/NADPH AND ALRESTATIN-LIKE INHIBITORS [J].
EHRIG, T ;
BOHREN, KM ;
PRENDERGAST, FG ;
GABBAY, KH .
BIOCHEMISTRY, 1994, 33 (23) :7157-7165
[10]  
Ellis EM, 1996, CANCER RES, V56, P2758