AN INVERSE SOURCE PROBLEM FOR A GENERALIZED TIME FRACTIONAL DIFFUSION EQUATION

被引:2
作者
Faizi, R. [1 ]
Atmania, R. [1 ]
机构
[1] Univ Badji Mokhtar, LMA Lab, POB 12, Annaba 23000, Algeria
来源
EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS | 2022年 / 10卷 / 01期
关键词
Inverse problem; Generalized fractional derivative; Bi-orthogonal system; Fourier method; ANOMALOUS DIFFUSION;
D O I
10.32523/2306-6172-2022-10-1-26-39
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the study of the inverse problem of finding the time-dependent coefficient of a generalized time fractional diffusion equation, in the case of non-local boundary and integral overdetermination conditions. The existence and uniqueness of the solution of the considered inverse problem are obtained by a method based on the expansion of the solution by using a bi-orthogonal system of functions and the fractional calculus. Moreover, we show its continuous dependence on the data. At the end, two examples are presented to illustrate the obtained results.
引用
收藏
页码:26 / 39
页数:14
相关论文
共 27 条
[1]   An inverse problem for a family of two parameters time fractional diffusion equations with nonlocal boundary conditions [J].
Ali, Muhammad ;
Malik, Salman A. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) :7737-7748
[2]  
Chitalkar-Dhaigude C P., 2017, Bulletin of the Marathwada Mathematical Society, Vol, V18, No, P01
[3]   An inverse problem for a generalized fractional diffusion [J].
Furati, Khaled M. ;
Iyiola, Olaniyi S. ;
Kirane, Mokhtar .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 249 :24-31
[4]   FRACTIONAL DIFFUSION EQUATION AND RELAXATION IN COMPLEX VISCOELASTIC MATERIALS [J].
GIONA, M ;
CERBELLI, S ;
ROMAN, HE .
PHYSICA A, 1992, 191 (1-4) :449-453
[5]   Mittag-Leffler Functions and Their Applications [J].
Haubold, H. J. ;
Mathai, A. M. ;
Saxena, R. K. .
JOURNAL OF APPLIED MATHEMATICS, 2011,
[6]   Experimental evidence for fractional time evolution in glass forming materials [J].
Hilfer, R .
CHEMICAL PHYSICS, 2002, 284 (1-2) :399-408
[7]  
Hilfer R., 2009, FRACT CALC APPL ANAL, V12, P299
[8]  
Ilin V.A., 2003, J.Math. Sci, V116, P3489, DOI DOI 10.1023/A:1024180807502
[10]   Inverse source problem for a time-fractional diffusion equation with nonlocal boundary conditions [J].
Ismailov, Mansur I. ;
Cicek, Muhammed .
APPLIED MATHEMATICAL MODELLING, 2016, 40 (7-8) :4891-4899