Estimation of a finite population distribution function based on a linear model with unknown heteroscedastic errors

被引:1
作者
Lombardía, MJ [1 ]
González-Manteiga, W [1 ]
Prada-Sánchez, JM [1 ]
机构
[1] Univ Santiago de Compostela, Dept Stat & Operat Res, Santiago De Compostela 15782, Spain
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2005年 / 33卷 / 02期
关键词
auxiliary information; bandwidth parameter; kernel estimation; resampling methods; superpopulation model;
D O I
10.1002/cjs.5550330203
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The authors consider a finite population P = {(Y-k, x(k)), k = 1,..., N} conforming to a linear superpopulation model with unknown heteroscedastic errors, the variances of which are values of a smooth enough function of the auxifiary variable X for their nonparametric estimation. They describe a method of the Chambers-Dunstan type for estimation of the distribution of { Y-k, k = 1,..., N} from a sample drawn from P without replacement, and determine the asymptotic distribution of its estimation error. They also consider estimation of its mean squared error in particular cases, evaluating both the analytical estimator derived by "plugging-in" the asymptotic variance, and a bootstrap approach that is also applicable to estimation of parameters other than mean squared error. These proposed methods are compared with some common competitors in simulation studies.
引用
收藏
页码:181 / 200
页数:20
相关论文
共 15 条
  • [1] [Anonymous], 2001, MONOGRAPHS STAT APPL
  • [2] Bandwidth selection for the smoothing of distribution functions
    Bowman, A
    Hall, P
    Prvan, T
    [J]. BIOMETRIKA, 1998, 85 (04) : 799 - 808
  • [3] ADAPTING FOR HETEROSCEDASTICITY IN LINEAR-MODELS
    CARROLL, RJ
    [J]. ANNALS OF STATISTICS, 1982, 10 (04) : 1224 - 1233
  • [4] CHAMBERS RL, 1986, BIOMETRIKA, V73, P597
  • [5] PROPERTIES OF ESTIMATORS OF THE FINITE POPULATION-DISTRIBUTION FUNCTION
    CHAMBERS, RL
    DORFMAN, AH
    HALL, P
    [J]. BIOMETRIKA, 1992, 79 (03) : 577 - 582
  • [6] Hardle W., 1990, APPL NONPARAMETRIC R, DOI DOI 10.1017/CCOL0521382483
  • [7] Hardle W., 1991, Smoothing Techniques
  • [8] Bootstrapping the Chambers-Dunstan estimate of a finite population distribution function
    Lombardía, MJ
    González-Manteiga, W
    Prada-Sánchez, JM
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 116 (02) : 367 - 388
  • [9] MULLER HG, 1980, LECT NOTES STAT, V46
  • [10] PRESNELL P, 1994, 470 U FLOR DEP STAT