Inexact Proximal Point Methods in Metric Spaces

被引:6
|
作者
Zaslavski, Alexander J. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
Computational error; Metric space; Nonconvex programming; Proximal method; Well-posed problem; MAXIMAL MONOTONE-OPERATORS; COMPUTATIONAL ERRORS; WELL-POSEDNESS; BANACH-SPACES; VARIATIONAL INEQUALITY; NONCONVEX OPTIMIZATION; VECTOR OPTIMIZATION; ALGORITHM; CONVERGENCE;
D O I
10.1007/s11228-011-0185-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the local convergence of a proximal point method in a metric space under the presence of computational errors. We show that the proximal point method generates a good approximate solution if the sequence of computational errors is bounded from above by some constant. The principle assumption is a local error bound condition which relates the growth of an objective function to the distance to the set of minimizers introduced by Hager and Zhang (SIAM J Control Optim 46:1683-1704, 2007).
引用
收藏
页码:589 / 608
页数:20
相关论文
共 50 条
  • [31] Metric subregularity and the proximal point method
    Leventhal, D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 360 (02) : 681 - 688
  • [32] VARIABLE METRIC INEXACT LINE-SEARCH-BASED METHODS FOR NONSMOOTH OPTIMIZATION
    Bonettini, S.
    Loris, I.
    Porta, F.
    Prato, M.
    SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (02) : 891 - 921
  • [33] Fixed point theory in partial metric spaces via φ-fixed point's concept in metric spaces
    Jleli, Mohamed
    Samet, Bessem
    Vetro, Calogero
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [34] General Fixed Point Theorems on Metric Spaces and 2-metric Spaces
    Tran Van An
    Nguyen Van Dung
    Vo Thi Le Hang
    FILOMAT, 2014, 28 (10) : 2037 - 2045
  • [35] Fixed point theory in partial metric spaces via φ-fixed point’s concept in metric spaces
    Mohamed Jleli
    Bessem Samet
    Calogero Vetro
    Journal of Inequalities and Applications, 2014
  • [36] On the proximal point method for equilibrium problems in Hilbert spaces
    Iusem, Alfredo N.
    Sosa, Wilfredo
    OPTIMIZATION, 2010, 59 (08) : 1259 - 1274
  • [37] φ-BEST PROXIMITY POINT THEOREMS IN METRIC SPACES WITH APPLICATIONS IN PARTIAL METRIC SPACES
    Imdad, Mohammad
    Saleh, Hayel N.
    Alfaqih, Waleed M.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (01): : 190 - 200
  • [38] On inexact generalized proximal methods with a weakened error tolerance criterion
    Kaplan, A
    Tichatschke, R
    OPTIMIZATION, 2004, 53 (01) : 3 - 17
  • [39] Inexact proximal Newton methods for self-concordant functions
    Li, Jinchao
    Andersen, Martin S.
    Vandenberghe, Lieven
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2017, 85 (01) : 19 - 41
  • [40] Proximal methods for nonlinear programming: double regularization and inexact subproblems
    Eckstein, Jonathan
    Silva, Paulo J. S.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 46 (02) : 279 - 304