PRGdb 4.0: an updated database dedicated to genes involved in plant disease resistance process

被引:51
作者
Calle Garcia, Joan [1 ]
Guadagno, Anna [2 ]
Paytuvi-Gallart, Andreu [1 ]
Saera-Vila, Alfonso [1 ]
Amoroso, Ciro Gianmaria [2 ]
D'Esposito, Daniela [2 ]
Andolfo, Giuseppe [2 ]
Aiese Cigliano, Riccardo [1 ]
Sanseverino, Walter [1 ]
Ercolano, Maria Raffaella [2 ]
机构
[1] Sequentia Biotech SL, Calle Comte Urgell 240, Barcelona 08036, Spain
[2] Univ Napoli Federico II, Dipartimento Agr, Via Univ 100, I-80055 Portici, Italy
基金
欧盟地平线“2020”;
关键词
ARABIDOPSIS; RESPONSES;
D O I
10.1093/nar/gkab1087
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Plant Resistance Genes database (PRGdb; http://prgdb.org/prgdb4/) has been greatly expanded, keeping pace with the increasing amount of available knowledge and data (sequenced proteomes, cloned genes, public analysis data, etc.). The easy-to-use style of the database website has been maintained, while an updated prediction tool, more data and a new section have been added. This new section will contain plant resistance transcriptomic experiments, providing additional easy-to-access experimental information. DRAGO3, the tool for automatic annotation and prediction of plant resistance genes behind PRGdb, has been improved in both accuracy and sensitivity, leading to more reliable predictions. PRGdb offers 199 reference resistance genes and 586.652 putative resistance genes from 182 sequenced proteomes. Compared to the previous release, PRGdb 4.0 has increased the number of reference resistance genes from 153 to 199, the number of putative resistance genes from 177K from 76 proteomes to 586K from 182 sequenced proteomes. A new section has been created that collects plant-pathogen transcriptomic data for five species of agricultural interest. Thereby, with these improvements and data expansions, PRGdb 4.0 aims to serve as a reference to the plant scientific community and breeders worldwide, helping to further study plant resistance mechanisms that contribute to fighting pathogens.
引用
收藏
页码:D1483 / D1490
页数:8
相关论文
共 66 条
[1]   Comparative transcriptomics of Central Asian Vitis vinifera accessions reveals distinct defense strategies against powdery [J].
Amrine, Katherine C. H. ;
Blanco-Ulate, Barbara ;
Riaz, Summaira ;
Pap, Daniel ;
Jones, Laura ;
Figueroa-Balderas, Rosa ;
Walker, M. Andrew ;
Cantu, Dario .
HORTICULTURE RESEARCH, 2015, 2
[2]   Plant Innate Immunity Multicomponent Model [J].
Andolfo, Giuseppe ;
Ercolano, Maria R. .
FRONTIERS IN PLANT SCIENCE, 2015, 6
[3]   Parallel evolution of the POQR prolyl oligo peptidase gene conferring plant quantitative disease resistance [J].
Badet, Thomas ;
Voisin, Derry ;
Mbengue, Malick ;
Barascud, Marielle ;
Sucher, Justine ;
Sadon, Pierre ;
Balague, Claudine ;
Roby, Dominique ;
Raffaele, Sylvain .
PLOS GENETICS, 2017, 13 (12)
[4]   Comparative Transcriptome Profiling of the Early Response to Magnaporthe oryzae in Durable Resistant vs Susceptible Rice (Oryza sativa L.) Genotypes [J].
Bagnaresi, Paolo ;
Biselli, Chiara ;
Orru, Luigi ;
Urso, Simona ;
Crispino, Laura ;
Abbruscato, Pamela ;
Piffanelli, Pietro ;
Lupotto, Elisabetta ;
Cattivelli, Luigi ;
Vale, Giampiero .
PLOS ONE, 2012, 7 (12)
[5]   Grapevine comparative early transcriptomic profiling suggests that Flavescence doree phytoplasma represses plant responses induced by vector feeding in susceptible varieties [J].
Bertazzon, Nadia ;
Bagnaresi, Paolo ;
Forte, Vally ;
Mazzucotelli, Elisabetta ;
Filippin, Luisa ;
Guerra, Davide ;
Zechini, Antonella ;
Cattivelli, Luigi ;
Angelini, Elisa .
BMC GENOMICS, 2019, 20 (1)
[6]   Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes [J].
Camilios-Neto, Doumit ;
Bonato, Paloma ;
Wassem, Roseli ;
Tadra-Sfeir, Michelle Z. ;
Brusamarello-Santos, Liziane C. C. ;
Valdameri, Glaucio ;
Donatti, Lucelia ;
Faoro, Helisson ;
Weiss, Vinicius A. ;
Chubatsu, Leda S. ;
Pedrosa, Fabio O. ;
Souza, Emanuel M. .
BMC GENOMICS, 2014, 15
[7]   Enhanced resistance to bacterial and oomycete pathogens by short tandem target mimic RNAs in tomato [J].
Canto-Pastor, Alex ;
Santos, Bruno A. M. C. ;
Valli, Adrian A. ;
Summers, William ;
Schornack, Sebastian ;
Baulcombe, David C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (07) :2755-2760
[8]   Transcriptome dynamics of Arabidopsis during sequential biotic and abiotic stresses [J].
Coolen, Silvia ;
Proietti, Silvia ;
Hickman, Richard ;
Davila Olivas, Nelson H. ;
Huang, Ping-Ping ;
Van Verk, Marcel C. ;
Van Pelt, Johan A. ;
Wittenberg, Alexander H. J. ;
De Vos, Martin ;
Prins, Marcel ;
Van Loon, Joop J. A. ;
Aarts, Mark G. M. ;
Dicke, Marcel ;
Pieterse, Corne M. J. ;
Van Wees, Saskia C. M. .
PLANT JOURNAL, 2016, 86 (03) :249-267
[9]   Genes Expressed in Grapevine Leaves Reveal Latent Wood Infection by the Fungal Pathogen Neofusicoccum parvum [J].
Czemmel, Stefan ;
Galarneau, Erin R. ;
Travadon, Renaud ;
McElrone, Andrew J. ;
Cramer, Grant R. ;
Baumgartner, Kendra .
PLOS ONE, 2015, 10 (03)
[10]   Tomato transcriptomic response to Tuta absoluta infestation [J].
D'Esposito, Daniela ;
Manzo, Daniele ;
Ricciardi, Alessandro ;
Garonna, Antonio Pietro ;
De Natale, Antonino ;
Frusciante, Luigi ;
Pennacchio, Francesco ;
Ercolano, Maria Raffaella .
BMC PLANT BIOLOGY, 2021, 21 (01)