Spherical layered Li-rich cathode material: Unraveling the role of oxygen vacancies on improving lithium ion conductivity

被引:39
作者
Wang, Zhen [1 ]
Lin, Xiaoyan [2 ]
Zhang, Junting [2 ]
Wang, Dong [2 ]
Ding, Chunyan [2 ]
Zhu, Yongming [3 ]
Gao, Peng [3 ]
Huang, Xiaoxiao [1 ]
Wen, Guangwu [1 ,2 ,4 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
[2] Shandong Univ Technol, Sch Mat Sci & Engn, Zibo 255000, Peoples R China
[3] Harbin Inst Technol Weihai, Dept Appl Chem, Weihai 264209, Peoples R China
[4] Shandong Ind Ceram Res & Design Inst Co Ltd, Zibo 255000, Peoples R China
基金
中国国家自然科学基金;
关键词
Layered lithium-rich manganese oxide material; Low-temperature combustion synthesis method; Positron annihilation; Oxygen vacancy; DFT calculations; ELECTROCHEMICAL PROPERTIES; RATE PERFORMANCE; VOLTAGE DECAY; BLACK TITANIA; OXIDE; BATTERIES; SURFACE; MN; NI; ELECTRODES;
D O I
10.1016/j.jpowsour.2020.228171
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The commercialization of layered lithium-rich manganese oxide material (LLMO) suffers from low conductivity, poor cycling performance, and complicated synthetic techniques. Herein, we develop a low-cost, short-time, and simple low-temperature combustion synthesis (LCS) method for massive production of spherical LLMO material with high oxygen vacancy concentration. In our LCS method, the microstructure and oxygen vacancy concentration of the products are controllable by regulating the dosage of fuel (i.e., urea). Positron annihilation and electron paramagnetic resonance both accurately characterize oxygen vacancy in materials with different urea dosages. When the dosage of urea is 1.5 times of stoichiometric ratio, both the free electron density and oxygen vacancy concentration of the obtained U1.5@LLMO are the highest, which are favorable for rapid transfer of electrons and ions. At rate of 1 C, the average discharge capacity of U1.5@LLMO is 185 mAh g (-1) with a high capacity retention of 94.33% after 100 cycles. The corresponding lithium ion diffusion is 1.346*10(-12) cm(2)S(-1), much higher than those of other samples. DFT calculation demonstrated that the electrochemical activity of Li+ increased significantly with the increase of oxygen vacancy concentration. This powerful LCS method for the production of LLMO with excellent electrochemical properties shows great potentials for large-scale applications.
引用
收藏
页数:11
相关论文
共 55 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 [J].
Armstrong, A. Robert ;
Holzapfel, Michael ;
Novak, Petr ;
Johnson, Christopher S. ;
Kang, Sun-Ho ;
Thackeray, Michael M. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) :8694-8698
[3]   A Flexible Nanostructured Paper of a Reduced Graphene Oxide-Sulfur Composite for High- Performance Lithium-Sulfur Batteries with Unconventional Configurations [J].
Cao, Jun ;
Chen, Chen ;
Zhao, Qing ;
Zhang, Ning ;
Lu, Qiongqiong ;
Wang, Xinyu ;
Niu, Zhiqiang ;
Chen, Jun .
ADVANCED MATERIALS, 2016, 28 (43) :9629-+
[4]   Understanding the Electrochemical Properties of Li-Rich Cathode Materials from First-Principles Calculations [J].
Cao, Tingting ;
Shi, Chunsheng ;
Zhao, Naiqin ;
He, Chunnian ;
Li, Jiajun ;
Liu, Enzuo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (52) :28749-28756
[5]   Surface modification with oxygen vacancy in Li-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries [J].
Chen, Bozhou ;
Zhao, Bangchuan ;
Zhou, Jiafeng ;
Fang, Zhitang ;
Huang, Yanan ;
Zhu, Xuebin ;
Sun, Yuping .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2019, 35 (06) :994-1002
[6]   Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals [J].
Chen, Xiaobo ;
Liu, Lei ;
Yu, Peter Y. ;
Mao, Samuel S. .
SCIENCE, 2011, 331 (6018) :746-750
[7]   Countering the Voltage Decay in High Capacity xLi2MnO3•(1-x)LiMO2 Electrodes (M=Mn, Ni, Co) for Li+-Ion Batteries [J].
Croy, Jason R. ;
Kim, Donghan ;
Balasubramanian, Mahalingam ;
Gallagher, Kevin ;
Kang, Sun-Ho ;
Thackeray, Michael M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (06) :A781-A790
[8]   Effect of synthetic routes on the rate performance of Li-rich layered Li1.2Mn0.56Ni0.12Co0.12O2 [J].
Fu, Fang ;
Wang, Qi ;
Deng, Ya-Ping ;
Shen, Chong-Heng ;
Peng, Xin-Xing ;
Huang, Ling ;
Sun, Shi-Gang .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (09) :5197-5203
[9]   Selecting Substituent Elements for Li-Rich Mn-Based Cathode Materials by Density Functional Theory (DFT) Calculations [J].
Gao, Yurui ;
Wang, Xuefeng ;
Ma, Jun ;
Wang, Zhaoxiang ;
Chen, Liquan .
CHEMISTRY OF MATERIALS, 2015, 27 (09) :3456-3461
[10]   Ferroelectricity induced by oxygen vacancies in relaxors with perovskite structure [J].
Glinchuk, Maya D. ;
Eliseev, Eugene A. ;
Li, Guorong ;
Zeng, Jiangtao ;
Kalinin, Sergei V. ;
Morozovska, Anna N. .
PHYSICAL REVIEW B, 2018, 98 (09)