Recovering the topology of surfaces from cluster algebras

被引:3
作者
Bucher, Eric [1 ]
Yakimov, Milen [2 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
Surface cluster algebras; Mapping class groups; Cluster automorphisms;
D O I
10.1007/s00209-017-1901-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an effective method for recovering the topology of a bordered oriented surface with marked points from its cluster algebra. The information is extracted from the maximal triangulations of the surface, those that have exchange quivers with maximal number of arrows in the mutation class. The method gives new proofs of the automorphism and isomorphism problems for the surface cluster algebras as well as the uniqueness of the Fomin-Shapiro-Thurston block decompositions of the exchange quivers of the surface cluster algebras. The previous proofs of these results followed a different approach based on Gu's direct proof of the last result. The method also explains the exceptions to these results due to pathological problems with the maximal triangulations of several surfaces.
引用
收藏
页码:565 / 594
页数:30
相关论文
共 36 条
  • [1] Alim M, 2013, COMMUN MATH PHYS, V323, P1185, DOI 10.1007/s00220-013-1789-8
  • [2] On a category of cluster algebras
    Assem, Ibrahim
    Dupont, Gregoire
    Schiffler, Ralf
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (03) : 553 - 582
  • [3] Cluster automorphisms
    Assem, Ibrahim
    Schiffler, Ralf
    Shramchenko, Vasilisa
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2012, 104 : 1271 - 1302
  • [4] Barot M, 2015, T AM MATH SOC, V367, P1945
  • [5] Cluster algebras III: Upper bounds and double Bruhat cells
    Berenstein, A
    Fomin, S
    Zelevinsky, A
    [J]. DUKE MATHEMATICAL JOURNAL, 2005, 126 (01) : 1 - 52
  • [6] QUADRATIC DIFFERENTIALS AS STABILITY CONDITIONS
    Bridgeland, Tom
    Smith, Ivan
    [J]. PUBLICATIONS MATHEMATIQUES DE L IHES, 2015, (121): : 155 - 278
  • [7] Bucher E., J ALGEBRAIC IN PRESS
  • [8] Canakci I., 2015, P AM MATH SOC B, V2, P35
  • [9] Coxeter groups, quiver mutations and geometric manifolds
    Felikson, Anna
    Tumarkin, Pavel
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2016, 94 : 38 - 60
  • [10] Skew-symmetric cluster algebras of finite mutation type
    Felikson, Anna
    Shapiro, Michael
    Tumarkin, Pavel
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2012, 14 (04) : 1135 - 1180