Graphene nanopattern as a universal epitaxy platform for single-crystal membrane production and defect reduction

被引:46
作者
Kim, Hyunseok [1 ,2 ]
Lee, Sangho [1 ,2 ]
Shin, Jiho [1 ,2 ]
Zhu, Menglin [3 ]
Akl, Marx [4 ]
Lu, Kuangye [1 ,2 ]
Han, Ne Myo [1 ,2 ]
Baek, Yongmin [5 ]
Chang, Celesta S. [1 ,2 ]
Suh, Jun Min [1 ,2 ]
Kim, Ki Seok [1 ]
Park, Bo-In [1 ,2 ]
Zhang, Yanming [6 ]
Choi, Chanyeol [7 ]
Shin, Heechang [8 ]
Yu, He [1 ,2 ]
Meng, Yuan [9 ]
Kim, Seung-Il [10 ,11 ]
Seo, Seungju [1 ,2 ]
Lee, Kyusang [5 ]
Kum, Hyun S. [8 ]
Lee, Jae-Hyun [10 ,11 ]
Ahn, Jong-Hyun [8 ]
Bae, Sang-Hoon [9 ]
Hwang, Jinwoo [3 ]
Shi, Yunfeng [6 ]
Kim, Jeehwan [1 ,2 ,12 ]
机构
[1] MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[3] Ohio State Univ, Dept Mat Sci & Engn, 116 W 19Th Ave, Columbus, OH 43210 USA
[4] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY USA
[5] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA USA
[6] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
[7] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[8] Yonsei Univ, Sch Elect & Elect Engn, Seoul, South Korea
[9] Washington Univ, Dept Mech Engn & Mat Sci, St Louis, MO 63110 USA
[10] Ajou Univ, Dept Energy Syst Res, Suwon, South Korea
[11] Ajou Univ, Dept Mat Sci & Engn, Suwon, South Korea
[12] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
HETEROGENEOUS INTEGRATION; GROWTH; GAAS; LAYER; SI; LASERS;
D O I
10.1038/s41565-022-01200-6
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Heterogeneous integration of single-crystal materials offers great opportunities for advanced device platforms and functional systems'. Although substantial efforts have been made to co-integrate active device layers by heteroepitaxy, the mismatch in lattice polarity and lattice constants has been limiting the quality of the grown materials 2 . Layer transfer methods as an alternative approach, on the other hand, suffer from the limited availability of transferrable materials and transfer-process-related obstacles 3 . Here, we introduce graphene nanopatterns as an advanced heterointegration platform that allows the creation of a broad spectrum of freestanding single-crystalline membranes with substantially reduced defects, ranging from non-polar materials to polar materials and from low-bandgap to high-bandgap semiconductors. Additionally, we unveil unique mechanisms to substantially reduce crystallographic defects such as misfit dislocations, threading dislocations and antiphase boundaries in lattice- and polarity-mismatched heteroepitaxial systems, owing to the flexibility and chemical inertness of graphene nanopatterns. More importantly, we develop a comprehensive mechanics theory to precisely guide cracks through the graphene layer, and demonstrate the successful exfoliation of any epitaxial overlayers grown on the graphene nanopatterns. Thus, this approach has the potential to revolutionize the heterogeneous integration of dissimilar materials by widening the choice of materials and offering flexibility in designing heterointegrated systems.
引用
收藏
页码:1054 / +
页数:8
相关论文
共 41 条
[1]   LATERAL GROWTH-PROCESS OF GAAS OVER TUNGSTEN GRATINGS BY METALORGANIC CHEMICAL VAPOR-DEPOSITION [J].
ASAI, H ;
ANDO, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1985, 132 (10) :2445-2453
[2]   Graphene-assisted spontaneous relaxation towards dislocation-free heteroepitaxy [J].
Bae, Sang-Hoon ;
Lu, Kuangye ;
Han, Yimo ;
Kim, Sungkyu ;
Qiao, Kuan ;
Choi, Chanyeol ;
Nie, Yifan ;
Kim, Hyunseok ;
Kum, Hyun S. ;
Chen, Peng ;
Kong, Wei ;
Kang, Beom-Seok ;
Kim, Chansoo ;
Lee, Jaeyong ;
Baek, Yongmin ;
Shim, Jaewoo ;
Park, Jinhee ;
Joo, Minho ;
Muller, David A. ;
Lee, Kyusang ;
Kim, Jeehwan .
NATURE NANOTECHNOLOGY, 2020, 15 (04) :272-+
[3]   Layer transfer by controlled spalling [J].
Bedell, Stephen W. ;
Fogel, Keith ;
Lauro, Paul ;
Shahrjerdi, Davood ;
Ott, John A. ;
Sadana, Devendra .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (15)
[4]   van der Waals Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations [J].
Bjorkman, T. ;
Gulans, A. ;
Krasheninnikov, A. V. ;
Nieminen, R. M. .
PHYSICAL REVIEW LETTERS, 2012, 108 (23)
[5]   Empirical potential for molecular simulation of graphene nanoplatelets [J].
Bourque, Alexander J. ;
Rutledge, Gregory C. .
JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (14)
[6]   Crystal Phase Control during Epitaxial Hybridization of III-V Semiconductors with Silicon [J].
Calvo, Marta Rio ;
Rodriguez, Jean-Baptiste ;
Cornet, Charles ;
Cerutti, Laurent ;
Ramonda, Michel ;
Trampert, Achim ;
Patriarche, Gilles ;
Tournie, Eric .
ADVANCED ELECTRONIC MATERIALS, 2022, 8 (01)
[7]  
Chen SM, 2016, NAT PHOTONICS, V10, P307, DOI [10.1038/NPHOTON.2016.21, 10.1038/nphoton.2016.21]
[8]   Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics [J].
Cheng, Cheng-Wei ;
Shiu, Kuen-Ting ;
Li, Ning ;
Han, Shu-Jen ;
Shi, Leathen ;
Sadana, Devendra K. .
NATURE COMMUNICATIONS, 2013, 4
[9]   EPITAXIAL-GROWTH OF SI1-XGEX ON SI(100)2X1 - A MOLECULAR-DYNAMICS STUDY [J].
ETHIER, S ;
LEWIS, LJ .
JOURNAL OF MATERIALS RESEARCH, 1992, 7 (10) :2817-2827
[10]   Initiation strategies for simultaneous control of antiphase domains and stacking faults in GaAs solar cells on Ge [J].
Faucher, Joseph ;
Masuda, Taizo ;
Lee, Minjoo Larry .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2016, 34 (04)