Flame structure and NOx emission characteristics in a single hydrogen combustor

被引:21
作者
Choi, Jaehong [1 ]
Ahn, Myunggeun [2 ]
Kwak, Sanghyeok [1 ]
Lee, Jong Guen [3 ]
Yoon, Youngbin [1 ,4 ]
机构
[1] Seoul Natl Univ, Dept Aerosp Engn, Seoul, South Korea
[2] Korea Inst Machinery & Mat, Ecofriendly Energy Convers Res Div, Seoul, South Korea
[3] Univ Cincinnati, Dept Aerosp Engn & Engn Mech, Cincinnati, OH USA
[4] Seoul Natl Univ, Inst Adv Aerosp Technol, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Hydrogen; Emission; Swirl; Residence time; Micromixer; FLASHBACK LIMITS; COAXIAL AIR; GAS; VELOCITIES;
D O I
10.1016/j.ijhydene.2022.06.247
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, the effects of fuel-induced swirl number on the flame structure and NOx emissions are observed. A tube-type nozzle with four fuel injection holes is used. The fuel injection holes are located away from the centerline of the nozzle to induce a low swirl effect in the flow. First, the flame structure changes with the fuel-induced swirl number, separating into four small flames in the high-swirl region; the flames are classified into three types. Subsequently, NOx emissions decrease with an increase in the fuel-induced swirl number. However, this shows a stepwise discontinuous change rather than a gradual change. The NOx emission is linearly proportional to the residence time of the combustion gas, which is calculated using the flame volume and flame structure. In conclusion, the change in the flame structure by the fuel-induced swirl is a decisive factor in the reduction of the NOx.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:29542 / 29553
页数:12
相关论文
共 40 条
[1]   Effects of jet diameter and spacing in a micromixer-like burner for clean oxy-fuel combustion in gas turbines [J].
Abdelhafez, Ahmed ;
Hussain, Muzafar ;
Nemitallah, Medhat A. ;
Habib, Mohamed A. ;
Ali, Asif .
ENERGY, 2021, 228
[2]  
Asai T, 2013, INT C POWER ENG 2013, V1, P1, DOI [10.1299/mej.2014tep0044, DOI 10.1299/MEJ.2014TEP0044]
[3]  
Asai T, 2011, PROCEEDINGS OF THE ASME TURBO EXPO 2011, VOL 2, PTS A AND B, P311
[4]   Experimental and numerical investigations of the dry-low-NO, hydrogen micromix combustion chamber of an industrial gas turbine [J].
Ayed, A. Haj ;
Kusterer, K. ;
Funke, H. H. -W. ;
Keinz, J. ;
Striegan, C. ;
Bohn, D. .
PROPULSION AND POWER RESEARCH, 2015, 4 (03) :123-131
[5]   An experimental study of mild flameless combustion of methane/hydrogen mixtures [J].
Ayoub, M. ;
Rottier, C. ;
Carpentier, S. ;
Villermaux, C. ;
Boukhalfa, A. M. ;
Honore, D. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (08) :6912-6921
[6]   The future of hydrogen - opportunities and challenges [J].
Ball, Michael ;
Wietschel, Martin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (02) :615-627
[7]   A review on hydrogen industrial aerospace applications [J].
Cecere, D. ;
Giacomazzi, E. ;
Ingenito, A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (20) :10731-10747
[8]  
Cheng TS, 1998, TWENTY-SEVENTH SYMPOSIUM (INTERNATIONAL) ON COMBUSTION, VOLS 1 AND 2, P1229
[9]  
Claypole T. C., 1981, S INT COMBUST, V18, P81, DOI [10.1016/S0082-0784(81)80013-6, DOI 10.1016/S0082-0784(81)80013-6]
[10]   A REVIEW OF NOX FORMATION UNDER GAS-TURBINE COMBUSTION CONDITIONS [J].
CORREA, SM .
COMBUSTION SCIENCE AND TECHNOLOGY, 1993, 87 (1-6) :329-362