Multiple solutions for higher-order difference equations

被引:14
作者
Agarwal, RP
O'Regan, D
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119260, Singapore
[2] Natl Univ Ireland, Dept Math, Galway, Ireland
关键词
discrete boundary value problems; positive solutions; cones; Leray-Schauder alternative; Krasnoselskii's fixed point theorem;
D O I
10.1016/S0898-1221(99)00112-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper establishes the existence of twin nonnegative solutions to (i) conjugate, and (ii) (n, p), higher-order discrete boundary value problems. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:39 / 48
页数:10
相关论文
共 9 条
[1]  
AGARWAL RP, IN PRESS DIFFERENCE
[2]  
AGARWAL RP, IN PRESS DISCRETE CO
[3]  
AGARWAL RP, IN PRESS SINGULAR DI
[4]  
AGARWAL RP, 1997, NONLINEAR WORLD, V4, P101
[5]  
Agarwal RP, 1992, Difference equations and inequalities
[6]   MULTIPLE POSITIVE SOLUTIONS OF SOME BOUNDARY-VALUE-PROBLEMS [J].
ERBE, LH ;
HU, SC ;
WANG, HY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :640-648
[7]  
Lasota A., 1968, Ann. Pol. Math, V20, P183, DOI [10.4064/ap-20-2-183-190, DOI 10.4064/AP-20-2-183-190]
[8]  
WONG PJ, IN PRESS NONLINEAR A
[9]   Double positive solutions of (n,p) boundary value problems for higher order difference equations [J].
Wong, PJY ;
Agarwal, RP .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 32 (08) :1-21