Open Innovation Platform using Cloud-based Applications and Collaborative Space: A Case Study of Solubility Prediction Model Development

被引:0
作者
Esaki, Tsuyoshi [1 ]
Kumazawa, Keiko [2 ]
Takahashi, Kazutoshi [3 ]
Watanabe, Reiko [4 ]
Masuda, Tomohide [5 ]
Watanabe, Hirofumi [6 ]
Shimizu, Yugo [7 ]
Okada, Akitoshi [8 ]
Takimoto, Seisuke [8 ]
Shimada, Tomohiro [9 ]
Ikeda, Kazuyoshi [7 ,10 ]
机构
[1] Shiga Univ, Ctr Data Sci Educ & Res, 1-1-1 Banba, Hikone, Shiga 5228522, Japan
[2] Teijin Pharma Ltd, Pharmaceut Discovery Res Labs, 4-3-2 Asahigaoka, Hino, Tokyo 1918512, Japan
[3] Ajinomoto Co Inc, Res Inst Biosci Prod & Fine Chem, 1-1 Suzuki Cho, Kawasaki, Kanagawa 2108681, Japan
[4] Natl Inst Biomed Innovat Hlth & Nutr, AI Ctr Hlth & Biomed Res, Lab Bioinformat, 7-6-8 Saito Asagi, Ibaraki, Osaka 5670085, Japan
[5] Toray Industries Ltd, Pharmaceut Res Labs, 6-10-1 Tebiro, Kamakura, Kanagawa 2488555, Japan
[6] Kobe Univ, Educ Ctr Computat Sci & Engn, Chuo Ku, 7-1-48 Minatojimaminamimachi, Kobe, Hyogo 6500047, Japan
[7] Keio Univ, Fac Pharm, Div Phys Life Funct, Minato Ku, 1-5-30 Shibakoen, Tokyo 1058512, Japan
[8] Japan Tobacco Inc, Takatsuki Res Ctr, Cent Pharmaceut Res Inst, 1-1 Murasaki Cho, Takatsuki, Osaka 5691125, Japan
[9] Teijin Pharma Ltd, Planning & Control Div, Adm Dept, Chiyoda Ku, Kasumigaseki Common Gate West Tower 2-1, Tokyo 1008585, Japan
[10] RIKEN, Ctr Life Sci Technol, Tsurumi Ku, 1-7-22 Suehiro Cho, Yokohama, Kanagawa 2300045, Japan
关键词
Solubility; in-silico prediction; Data science; Open innovation; Collaborative drug discovery; Cross-sectoral technology; DEEP NEURAL-NETWORKS; DRUG DISCOVERY; GAME; GO;
D O I
10.1273/cbij.20.5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In recent years, with the emergence of new technologies employing information science, open innovation and collaborative drug discovery research, utilizing biological and chemical experimental data, have been actively conducted. The Young Researcher Association of Chem-Bio Informatics Society ("CBI Wakate") has constructed an online discussion space using Slack and provided a cloud-based collaborative platform in which researchers have freely discussed specific issues and aimed at raising the level of cross-sectoral communication regarding technology and knowledge. On this platform, we created three channels dataset, model evaluation and scripts where participants with different backgrounds co-developed a solution for solubility prediction. In the dataset channel, we exchanged our knowledge and methodology for calculations using the chemical descriptors for the original dataset and also discussed methods to improve the dataset for pharmaceutical purposes. We have also developed a protocol for evaluating the applicability of solubility prediction models for drug discovery by using the ChEMBL database and for sharing the dataset among users on the cloud. In the model evaluation channel, we discussed the necessary conditions for the prediction model to be used in daily drug discovery research. We examined the effect of these discussions on script development and suggested future improvements. This study provides an example of a new cloud-based open collaboration that can be useful for various projects in the early stage of drug discovery.
引用
收藏
页码:5 / 18
页数:14
相关论文
共 15 条
  • [1] Second Antibody Modeling Assessment (AMA-II)
    Almagro, Juan C.
    Teplyakov, Alexey
    Luo, Jinquan
    Sweet, Raymond W.
    Kodangattil, Sreekumar
    Hernandez-Guzman, Francisco
    Gilliland, Gary L.
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2014, 82 (08) : 1553 - 1562
  • [2] [Anonymous], 2019, CBI ANN M
  • [3] The rise of deep learning in drug discovery
    Chen, Hongming
    Engkvist, Ola
    Wang, Yinhai
    Olivecrona, Marcus
    Blaschke, Thomas
    [J]. DRUG DISCOVERY TODAY, 2018, 23 (06) : 1241 - 1250
  • [4] An iterative compound screening contest method for identifying target protein inhibitors using the tyrosine-protein kinase Yes
    Chiba, Shuntaro
    Ishida, Takashi
    Ikeda, Kazuyoshi
    Mochizuki, Masahiro
    Teramoto, Reiji
    Taguchi, Y-h.
    Iwadate, Mitsuo
    Umeyama, Hideaki
    Ramakrishnan, Chandrasekaran
    Thangakani, A. Mary
    Velmurugan, D.
    Gromiha, M. Michael
    Okuno, Tatsuya
    Kato, Koya
    Minami, Shintaro
    Chikenji, George
    Suzuki, Shogo D.
    Yanagisawa, Keisuke
    Shin, Woong-Hee
    Kihara, Daisuke
    Yamamoto, Kazuki Z.
    Moriwaki, Yoshitaka
    Yasuo, Nobuaki
    Yoshino, Ryunosuke
    Zozulya, Sergey
    Borysko, Petro
    Stavniichuk, Roman
    Honma, Teruki
    Hirokawa, Takatsugu
    Akiyama, Yutaka
    Sekijima, Masakazu
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [5] Dassault Systemes BIOVIA, 2018, PIP PIL REL 2018
  • [6] The ChEMBL database in 2017
    Gaulton, Anna
    Hersey, Anne
    Nowotka, Michal
    Bento, A. Patricia
    Chambers, Jon
    Mendez, David
    Mutowo, Prudence
    Atkinson, Francis
    Bellis, Louisa J.
    Cibrian-Uhalte, Elena
    Davies, Mark
    Dedman, Nathan
    Karlsson, Anneli
    Magarinos, Maria Paula
    Overington, John P.
    Papadatos, George
    Smit, Ines
    Leach, Andrew R.
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) : D945 - D954
  • [7] Conformation Generation: The State of the Art
    Hawkins, Paul C. D.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2017, 57 (08) : 1747 - 1756
  • [8] Kumparak G., 2015, TECHCRUNCH
  • [9] Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings
    Lipinski, CA
    Lombardo, F
    Dominy, BW
    Feeney, PJ
    [J]. ADVANCED DRUG DELIVERY REVIEWS, 1997, 23 (1-3) : 3 - 25
  • [10] Maria A. G., 2014, CURR TOP MED CHEM, V14, P294, DOI [10.2174/1568026613666131127125858, DOI 10.2174/1568026613666131127125858]