Statistical modeling approach for PM10 prediction before and during confinement by COVID-19 in South Lima, Peru

被引:14
作者
Cabello-Torres, Rita Jaqueline [1 ]
Ponce Estela, Manuel Angel [2 ]
Sanchez-Ccoyllo, Odon [3 ]
Alessandro Romero-Cabello, Edison [4 ]
Garcia Avila, Fausto Fernando [5 ]
Alberto Castaneda-Olivera, Carlos [1 ]
Valdiviezo-Gonzales, Lorgio [6 ]
Quispe Eulogio, Carlos Enrique [7 ]
Huaman De la Cruz, Alex Ruben [8 ]
Linkolk Lopez-Gonzales, Javier [9 ]
机构
[1] Univ Cesar Vallejo, Escuela Ingn Ambiental, Lima, Peru
[2] Direcc Gen Salud Ambiental, Lima, Peru
[3] Univ Nacl Tecnol Lima Sur, Lima, Peru
[4] Univ Nacl Agr La Molina, Escuela Ingn Ambiental, Lima, Peru
[5] Univ Cuenca, Fac Ciencias Quim, Grp RISKEN, Cuenca, Ecuador
[6] Univ Tecnol Peru, Fac Ingn Mecan & Ind, Lima, Peru
[7] Univ Peruana Los Andes, Fac Ciencias Salud, Huancayo, Peru
[8] Univ Nacl Intercultural Selva Cent Juan Santos At, EP Ingn Ambiental, La Merced, Peru
[9] Univ Peruana Union, Fac Ingn & Arquitectura, Lima, Peru
关键词
PARTICULATE MATTER POLLUTION; AIR-QUALITY; HEALTH-RISK; PM2.5; CITY;
D O I
10.1038/s41598-022-20904-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A total of 188,859 meteorological-PM10 data validated before (2019) and during the COVID-19 pandemic (2020) were used. In order to predict PM10 in two districts of South Lima in Peru, hourly, daily, monthly and seasonal variations of the data were analyzed. Principal Component Analysis (PCA) and linear/nonlinear modeling were applied. The results showed the highest annual average PM10 for San Juan de Miraflores (SJM) (PM10-SJM: 78.7 mu g/m(3)) and the lowest in Santiago de Surco (SS) (PM10 -SS: 40.2 mu g/m(3)). The PCA showed the influence of relative humidity (RH)-atmospheric pressure (AP)temperature (T)/dew point (DP)-wind speed (WS)-wind direction (WD) combinations. Cool months with higher humidity and atmospheric instability decreased PM10 values in SJM and warm months increased it, favored by thermal inversion (TI). Dust resuspension, vehicular transport and stationary sources contributed more PM10 at peak times in the morning and evening. The Multiple linear regression (MLR) showed the best correlation (r = 0.6166), followed by the three-dimensional model LogAP-LogWD-LogPM(10) (r = 0.5753); the RMSE-MLR (12.92) exceeded that found in the 3D models (RMSE < 0.3) and the NSE-MLR criterion (0.3804) was acceptable. PM10 prediction was modeled using the algorithmic approach in any scenario to optimize urban management decisions in times of pandemic.
引用
收藏
页数:19
相关论文
共 60 条
[1]   Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models [J].
Adams, Matthew D. ;
Kanaroglou, Pavlos S. .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2016, 168 :133-141
[2]   Managing future air quality in megacities: A case study for Delhi [J].
Amann, Markus ;
Purohit, Pallav ;
Bhanarkar, Anil D. ;
Bertok, Imrich ;
Borken-Kleefeld, Jens ;
Cofala, Janusz ;
Heyes, Chris ;
Kiesewetter, Gregor ;
Klimont, Zbigniew ;
Liu, Jun ;
Majumdar, Dipanjali ;
Binh Nguyen ;
Rafaj, Peter ;
Rao, Padma S. ;
Sander, Robert ;
Schoepp, Wolfgang ;
Srivastava, Anjali ;
Vardhan, B. Harsh .
ATMOSPHERIC ENVIRONMENT, 2017, 161 :99-111
[3]  
[Anonymous], 2005, WHO AIR QUALITY GUID
[4]  
ATU, 2021, IND AT REP VIAJ DIAR
[5]   Novel approaches for air temperature prediction: A comparison of four hybrid evolutionary fuzzy models [J].
Azad, Armin ;
Kashi, Hamed ;
Farzin, Saeed ;
Singh, Vijay P. ;
Kisi, Ozgur ;
Karami, Hojat ;
Sanikhani, Hadi .
METEOROLOGICAL APPLICATIONS, 2020, 27 (01)
[6]  
Carmen G., 2019, 13 TECS
[7]   Forecasting PM10 levels using ANN and MLR: A case study for Sakarya City [J].
Ceylan, Z. ;
Bulkan, S. .
GLOBAL NEST JOURNAL, 2018, 20 (02) :281-290
[8]   Spatio-temporal changes of PM10 trends in South Korea caused by East Asian atmospheric variability [J].
Cho, J. H. ;
Kim, H. S. ;
Chung, Y. S. .
AIR QUALITY ATMOSPHERE AND HEALTH, 2021, 14 (07) :1001-1016
[9]   Air quality assessment and pollution forecasting using artificial neural networks in Metropolitan Lima-Peru [J].
Cordova, Chardin Hoyos ;
Portocarrero, Manuel Nino Lopez ;
Salas, Rodrigo ;
Torres, Romina ;
Rodrigues, Paulo Canas ;
Lopez-Gonzales, Javier Linkolk .
SCIENTIFIC REPORTS, 2021, 11 (01)
[10]  
Croitoru Cristiana, 2018, E3S Web of Conferences, V32, DOI 10.1051/e3sconf/20183201010