Characteristic Times of Polymer Tumbling Under Shear Flow

被引:15
作者
Balboa Usabiaga, Florencio [1 ]
Delgado-Buscalioni, Rafael [1 ]
机构
[1] Univ Autonoma Madrid, Dept Fis Teor Mat Condensada, E-28049 Madrid, Spain
关键词
brownian dynamics; computer modelling; polymer dynamics; shear; tumbling; FLEXIBLE POLYMERS; BROWNIAN DYNAMICS; DNA; SIMULATIONS;
D O I
10.1002/mats.201100020
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The tumbling dynamics of flexible chains in shear flow, analysed by Brownian Dynamics simulations, are found to be ruled by three characteristic times tau(tumb), tau(dif) and tau(lag). The average tumbling time ttumb scales with the shear rate with a robust exponent against excluded volume (EV) or hydrodynamic interactions, tau(tumb) approximate to (gamma) over dot(-2/3). The chain extensions in the flow plane decorrelate in a time tdif determined by the diffusion of the chain configuration in gradient direction, tau(dif) approximate to Y-2/D. The chain keeps memory of its configuration over a number of tumblings events given by the ratio tau(dif)/tau(tumb). While for ideal chains tau(dif)/tau(tumb) approximate to O(1), for expanded (EV) chains we find tau(dif)/tau(tumb) approximate to (gamma) over dot(0.2). Hence, EV chains tumble in a more deterministic way as (gamma) over dot is increased. As a consequence, contrary to previous assumptions, the exponential tail of the tumbling time distribution P(tau) approximate to exp(-nu tau) presents a non-Poissonian exponent. This exponent nu is found to be determined by a new characteristic time tau(lag) measuring how fast the chain in-flow elongation X responses to the drag force induced by chain fluctuations in gradient direction Y. PSCS numbers.
引用
收藏
页码:466 / 471
页数:6
相关论文
共 21 条
[11]   Stochastic simulations of DNA in flow: Dynamics and the effects of hydrodynamic interactions [J].
Jendrejack, RM ;
de Pablo, JJ ;
Graham, MD .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (17) :7752-7759
[12]   Single-chain dynamics in a semidilute polymer solution under steady shear [J].
Jose, Prasanth P. ;
Szamel, Grzegorz .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (22)
[13]   Dynamics of individual flexible polymers in a shear flow [J].
LeDuc, P ;
Haber, C ;
Bao, G ;
Wirtz, D .
NATURE, 1999, 399 (6736) :564-566
[14]   Experimental and Numerical Studies of Tethered DNA Shear Dynamics in the Flow-Gradient Plane [J].
Lueth, Christopher A. ;
Shaqfeh, Eric S. G. .
MACROMOLECULES, 2009, 42 (22) :9170-9182
[15]  
Nigam N.C., 1983, INTRO RANDOM VIBRATI
[16]   Characteristic periodic motion of polymers in shear flow [J].
Schroeder, CM ;
Teixeira, RE ;
Shaqfeh, ESG ;
Chu, S .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)
[17]   The dynamics of single-molecule DNA in flow [J].
Shaqfeh, ESG .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2005, 130 (01) :1-28
[18]   Single-polymer dynamics in steady shear flow [J].
Smith, DE ;
Babcock, HP ;
Chu, S .
SCIENCE, 1999, 283 (5408) :1724-1727
[19]  
Strobl GR, 1997, The Physics of Polymers, V2
[20]   Shear thinning and tumbling dynamics of single polymers in the flow-gradient plane [J].
Teixeira, RE ;
Babcock, HP ;
Shaqfeh, ESG ;
Chu, S .
MACROMOLECULES, 2005, 38 (02) :581-592