Periodic solutions of the Lp-Minkowski problem with indefinite weight

被引:3
作者
Cheng, Zhibo [1 ]
Torres, Pedro J. [2 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Henan, Peoples R China
[2] Univ Granada, Fac Ciencias, Dept Matemat Aplicada, Granada 18071, Spain
来源
MATHEMATICAL MODELLING AND CONTROL | 2022年 / 2卷 / 01期
基金
中国国家自然科学基金;
关键词
L-p-Minkowski problem; singular differential equation; indefinite weight; periodic solution; DIFFERENTIAL-EQUATIONS;
D O I
10.3934/mmc.2022002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a new sufficient condition for the existence of a periodic solution of the singular differential equation u '' + u = h(t)/u(rho), which is associated with the planar L-p-Minkowski problem. A similar result is valid for the conformal version of the
引用
收藏
页码:7 / 12
页数:6
相关论文
共 17 条
[1]   Self-similar solutions for the anisotropic affine curve shortening problem [J].
Ai, J ;
Chou, KS ;
Wei, JC .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2001, 13 (03) :311-337
[2]  
[Anonymous], 1974, Contributions to analysis (a collection of papers dedicated to Lipman Bers)
[3]   The planar Lp-Minkowski problem for 0 < p < 1 [J].
Boroczky, Karoly J. ;
Trinh, Hai T. .
ADVANCES IN APPLIED MATHEMATICS, 2017, 87 :58-81
[4]   Computation of Green's functions for boundary value problems with Mathematica [J].
Cabada, Alberto ;
Angel Cid, Jose ;
Maquez-Villamarin, Beatriz .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) :1919-1936
[5]   LP Minkowski problem with not necessarily positive data [J].
Chen, WX .
ADVANCES IN MATHEMATICS, 2006, 201 (01) :77-89
[6]   The two dimensional Lp Minkowski problem and nonlinear equations with negative exponents [J].
Dou, Jingbo ;
Zhu, Meijun .
ADVANCES IN MATHEMATICS, 2012, 230 (03) :1209-1221
[7]  
Guo D., 1988, Nonlinear Problems in Abstract Cones
[8]   Some results on second-order neutral functional differential equations with infinite distributed delay [J].
Han, Weiwei ;
Ren, Jingli .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (03) :1393-1406
[9]   A flow approach to the L-2 Minkowski problem [J].
Ivaki, Mohammad N. .
ADVANCES IN APPLIED MATHEMATICS, 2013, 50 (03) :445-464
[10]  
Jiang MY, 2010, ADV NONLINEAR STUD, V10, P297